A STUDY ON RANDOM EVOLUTION ASSOCIATED WITH A M/M/1/∞ QUEUEING SYSTEM WITH BALKING

M. Reni Sagayaraj1, S. Anand Gnaana Selvam2 and R. Reynald Susainathan3

1,2Department of Mathematics, Sacred Heart College, Tirupattur-635601, Vellore District.Tamil Nadu, S.India.
3Reckitt Benckiser, India Limited (Gurgaon), New Delhi. India. E-mail: reni.sagaya@gmail.com

Abstract: The arrival process in a queueing can be modified in several ways. One way is to allow arriving customers to leave the system without joining the queue. The act of a customer refusing to join the queue upon arrival is called balking. We consider an M/M/1/∞ queue with balking. The balking customers induce loss to the system and they alter the dynamics of the net profit. We associate various costs and analyze the Markov evolution of the net profit function. In this paper, we obtain the net profit function using the random evolution techniques.

Keywords: Markov Evolution, Balkin.

1. INTRODUCTION

We consider a counter where customers arrive according to a poisson process with rate λ. There is a single server at the counter and he serves the customers according to the order of their arrival. The service time for a customer has exponential distribution with mean $\frac{1}{\mu}$. An arriving customer joins the queue with probability 1 if the system size is 0. If the system size is 1 when a customers arrives, he join the queue with probability p and he balks with probability q, $p + q = 1$.

2. AN M/M/1/∞ QUEUE WITH BALKING

For simplicity, we assume that at time $t = 0$ there is 1 customer in the system. Let $P_{n(t)}$ be the probability that there are n customers in the system at time t. Then $P_{n(0)} = \delta_{1,n}$. We can easily obtain the forward equations as given below.

$$P'_{0}(t) = -\lambda p_{0}(t) + \mu p_{1}(t) \quad (1)$$

$$P'_{n}(t) = -(\lambda p + \mu) p_{n}(t) + \lambda pp_{n-1}(t) \mu p_{n-1}(t) \quad (n \geq 2) \quad (2)$$

$$p_{n}'(t) = -(\lambda p + \mu) p_{n}(t) + \lambda pp_{n-1}(t) + \mu p_{n-1}(t), \quad (n \geq 2) \quad (3)$$

We define

$$q_{n}(t) = \begin{cases} \mu p_{n}(t) + \lambda pp_{n-1}(t) & (n \geq 3) \\ \lambda p_{n}(t) + \mu p_{n-1}(t) & (n = 2) \end{cases}$$

Then, for $n > 3$, we have

$$q'_{n}(t) = (\lambda p + \mu) q_{n}(t) + e^{(\lambda p + \mu)t} \left[\mu \left[-(\lambda p + \mu) p_{n}(t) + \lambda pp_{n-1}(t) + \mu p_{n-1}(t) \right] - \lambda p \left[-(\lambda p + \mu) p_{n-1}(t) + \lambda pp_{n-2}(t) + \mu p_{n-2}(t) \right] \right]$$

$$= \mu q_{n+1}(t) + \lambda pq_{n-1}(t) \quad (5)$$
For \(n = 2 \), we have
\[
q'_2(t) = (\lambda p + \mu) q_2(t) + e^{(\lambda p + \mu)t} \left[\mu \left\{ - (\lambda p + \mu) p_2(t) + \lambda p \right\} + \mu p_2(t) \right] = \mu q_1(t) + \lambda p q_2(t)
\]
\[
q'_1(t) = (\lambda + \mu) q_2(t) + e^{(\lambda + \mu)t} \left[\mu \left\{ - (\lambda + \mu) p_1(t) + \lambda p \right\} + \mu p_2(t) \right]
\]
Error!
\[
(\text{6})
\]
The equations (6), (7) and (8) are subject to the initial condition
\[
q_n(0) = [\text{Sorry. Ignored \begin{cases} \ldots \end{cases}}]
\]
Defining
\[
H(s, t) = \sum_{n=\infty}^{\infty} q_n(t) s^n
\]
We get by using the equations (6), (7) and (8)
\[
\frac{\partial H(s, t)}{\partial t} = \left(\frac{\mu}{s} + \lambda ps \right) H(s, t) - \mu q_1(t)
\]
subject to the condition \(H(s, 0) = s[\mu - \lambda ps] \). Keeping \(q_1(t) \) as unknown, the equation \(\ast (\text{8}) \) can be readily solved and we obtain
Error!
\[
(\text{9})
\]
Setting \(\lambda p = \frac{\alpha \beta}{2} \) and \(\mu = \frac{\alpha}{2\beta} \), we have \(\alpha = 2 \sqrt{\lambda p \mu} \) and \(\beta = \sqrt{\frac{\lambda p}{\mu}} \) so that
\[
\exp \left(\left(\frac{\mu}{s} + \lambda ps \right) t \right) = \exp \left(\frac{1}{2} \left(\frac{(\beta s) + \frac{1}{(\beta s)} \right) (\alpha t) \right) = \sum_{n=\infty}^{\infty} (\beta s)^n I_n(\alpha t)
\]
(11)
where \(I_n(\alpha t) \), \(n = 0, \pm 1, \pm 2, \ldots \) are modified Bessel’s functions of the first kind given by
\[
I_n(u) = \sum_{k=0}^{\infty} \frac{u^{n+2k}}{2^{n+2k} k!(n+k)!}, \quad n > -1; \quad I_{-n}(u) = I_n(u)
\]
Substituting (11) in (9), we get
\[
\sum_{n=\infty}^{\infty} q_n(t) s^n = [\mu - \lambda ps] \sum_{n=\infty}^{\infty} (\beta s)^n I_n(\alpha t) - \frac{\mu}{s} \sum_{n=\infty}^{\infty} (\beta s)^n I_n(\alpha(t - \mu)) q_1(u) du
\]
(12)
Equating the coefficient of \(s^n \) in (12) for \(n = 1, 2, \ldots \) we obtain
\[
q_n(t) = \mu \beta^{n-1} I_{n-1}(\alpha t) - \lambda p \beta^{n-2} I_{n-2}(\alpha t) - \mu \beta^n \frac{\mu}{s} \int_0^t I_n(\alpha(t - \mu)) q_1(u) du
\]
(13)
3. THE MARKOV EVOLUTION OF A NET PROFIT FUNCTION

Let \(r(t) \) be the value of the service per unit time per customer in the system at time \(t \). We define

\[
r(t) = \begin{cases}
\text{[Sorry. Ignored]} & \text{...} \\
\end{cases}
\]

(14)

where \(n(t) \) represents the number of customers in the system at time \(t \). Here we assume that \(r_i > 0, i = 1, 2, 3 \). It is to be noted that \(-r_1 \) is the negative cost due to the idle time of the server and \(r_2, r_3 \) correspond to the state dependent positive gain due to the customers who joined the system. Clearly \(r_2 \) and \(r_3 \) contribute positive revenue to the net profit function. Then the net profit function \(L(t) \) is given by the stochastic integral

\[
L(t) = \int_0^t r(u)du
\]

(15)

In [15], by taking \(r(u) \) as the instantaneous velocity of the server, \(L(t) \) gives the distance travelled by server in time \(t \). Then the time evolution of the net gain can be studied by identifying the server as a particle under a random motion [12] on the real line with three velocities in a cyclic manner. We now study the time evolution of \(L(t) \). For this, we assume that the server enters into the idle state at time \(t = 0 \). Then we note that \(n(o) = 0 \) and \(r(0) = -r_1 \). It is easy to note that the discrete component of \(L(t) \) is given by

\[
\text{Error!}
\]

(16)

4 CONCLUSION

We have proposed a various cost analyze the markov evolution of the net profit. The balking behaviour is incorporated by assuming that an arriving customer joins the queue with probability \(p \) and the balks with probability \(q \). Explicit expression for the transient probabilities \(P_n(t) \) are found in a direct way along with steady state solution. The model extends substantially the earlier works available in the literature.

REFERENCES

