SOME COMMON FIXED POINT THEOREMS IN D*-METRIC SPACE

T. VEERAPANDI & AJI.M.PILLAI*
Reader in Mathematics, P.M.T. College, Melaneelithanallur – 627 953 India.
E-Mail: vrpnd@yahoo.co.in

*Part – Time Research Scholar, Manomaniam Sundaranar University, Tirunelveli, India.

Abstract

In this paper we establish some common Fixed Point Theorems for contraction and generalized contraction mappings in D*-metric space which is introduced by Shaban Sedghi, Nabi Shobe and Haiyun Zhou [10]. In what follows (X , D*) will denote D*-metric space, N, the set of all natural number and \(R^+ \), the set of all positive real number.

Mathematics Subject Classification: 54E40; 54E35; 35H25

Keywords: D*-metric contractive mapping; Complete D*-metric space; Common fixed point theorem.

1. Introduction

There have been an number of generalization in generalized metric space (or D-Metric space) initiated by Dhage [2] in 1992. He proved the existence of unique fixed point theorems of a self map satisfying a contractive conditions in complete and bounded D-Metric space. Dealing with D-Metric space, Ahmad etal. [1], Dhage [2, 3, 4] Rhoades [8], Singh and Sharma [9] and others made a significant contribution in fixed point theory of D-Metric space. Unfortunately almost all theorems in D-Metric space are not valid (See S.V.R Naidu and others [5-7]). Here our aim is to prove some common fixed point theorems using some generalized contractive conditions in D*- Metric space as a probable modification of the definition of D-Metric spaces introduced by Dhage [2].

Definition 1.1.

Let X be a non empty set. A generalized metric (or D*-metric) on X is a function \(D^* : X^3 \rightarrow [0, \infty) \) that satisfies the following conditions for each x, y, z, a \(\in X \).

1. \(D^*(x, y, z) \geq 0 \)
2. \(D^*(x, y, z) = 0 \) if and only if \(x = y = z \)
3. \(D^*(x, y, z) = D^*(\rho\{x, y, z\}) \) where \(\rho \) is permutation.
4. \(D^*(x, y, a) \leq D^*(x, y, z) + D^*(a, z, z) \).

The pair \((X, D^*)\) is called generalized metric (or D*-metric) space.

Example 1.2:

(a) \(D^*(x, y, z) = \max \{d(x, y), d(y, z), d(z, x)\} \),
(b) \(D^*(x, y, z) = d(x, y) + d(y, z) + d(z, x) \).

Here, d is the ordinary metric on X.

(c) If \(X = R^p \) then we define
\(D^*(x, y, z) = (||x - y||^p + ||y - z||^p + ||z - x||^p)^{1/p} \) for every \(p \in R^+ \)

(d) If \(X = R \) then we define
\(D^*(x, y, z) = \begin{cases} 0 & \text{if } x = y = z, \\ \max\{x, y, z\} & \text{otherwise}. \end{cases} \)

Remark 1.3.

In D*-metric space \(D^*(x, y, y) = D^*(x, x, y) \)

Definition 1.4.
A open ball in a \(D^*\) - metric space \(X\) with centre \(x\) and radius \(r\) is denoted by
\[B_{D^*}(x, r) = \{ y \in X : D^*(x, y, y) < r \}\]

Example 1.5.

Let \(X = \mathbb{R}\) denote \(D^*(x, y, z) = |x-y| + |y-z| + |z-x|\) for all \(x, y, z \in \mathbb{R}\).
Thus
\[B_{D^*}(0, 1) = \{ y \in \mathbb{R} / D^*(0, y, y) < 1 \} = \{ y \in \mathbb{R} / |0-y| + |y-y| + |y| < 1 \} = \{ y \in \mathbb{R} / |y| < \frac{1}{2} \} = \{ y \in \mathbb{R} / -\frac{1}{2} < y < \frac{1}{2} \} = \left(-\frac{1}{2}, \frac{1}{2}\right).\]

Definition 1.6.

Let \((X, D^*)\) be a \(D^*\) - metric space and \(A \subseteq X\).
1. If for every \(x \in A\), there exist \(r > 0\) such that \(B_{D^*}(x, r) \subseteq A\), then subset \(A\) is called open subset of \(X\).
2. Subset \(A\) of \(X\) is said to be \(D^*\) - bounded if there exist \(r > 0\) such that \(D^*(x, y, y) < r\) for all \(x, y \in A\).
3. A sequence \(\{x_n\}\) in \(X\) converges to \(x\) if and only if
\[D^*(x_n, x, x) = D^*(x, x, x_n) \rightarrow 0 \text{ as } n \rightarrow \infty.\]
That is, for each \(\varepsilon > 0\) there exist \(n_0 \in \mathbb{N}\) such that for all \(n \geq n_0\) implies \(D^*(x_n, x, x) < \varepsilon\).
It is also noted that \(D^*(x_n, x, x) = D^*(x, x, x_n) < \varepsilon\) for all \(n \geq n_0\), for some \(n_0 \in \mathbb{N}\).
4. A sequence \(\{x_n\}\) in \(X\) is called a Cauchy sequence if for each \(\varepsilon > 0\), there exist \(n_0 \in \mathbb{N}\) such that
\[D^*(x_n, x_m, x) \leq \varepsilon\]
for each \(n, m \geq n_0\) The \(D^*\) - metric space \((X, D^*)\) is said to complete if every Cauchy sequence is convergent.

Remark 1.7.

(1) \(D^*\) is continuous function \(X^3\)
(2) If sequence \(\{x_n\}\) in \(X\) converges to \(x\), then \(x\) is unique.
(3) Any convergent sequence in \((X, D^*)\) is a Cauchy sequence.

Definition 1.8.

A point \(x\) in \(X\) is a fixed point of the map \(T : X \rightarrow X\) if \(Tx = x\).

Definition 1.9.

A point \(x\) in \(X\) is a common fixed point of the two maps \(T_1, T_2 : X \rightarrow X\) if \(T_1(x) = T_2(x) = x\).

Theorem 1

Let \(X\) be a \(D^*\) - complete metric space and \(T_1, T_2 : X \rightarrow X\) be any two maps such that
\[D^*(T_1x, T_2y, z) \leq \alpha D^*(x, y, z)\]
for all \(x, y, z \in X\) and \(0 \leq \alpha \leq \frac{1}{2}\) Then \(T_1\) & \(T_2\) have a unique common fixed point.

Proof

Let \(x_0 \in X\) be any fixed arbitrary element Define a sequence \(\{x_n\}\) in \(X\) as.
\[x_{n+1} = T_1x_n\text{ and }x_{n+2} = T_2x_{n+1}\text{ for }n = 0, 1, 2, \ldots.\]
Let \(d_n = D^*(x_n, x_{n+1}, x_{n+2})\) for all \(n = 0, 1, 2, \ldots.\)

Now
\[d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_n) \leq D^*(T_1x_n, T_2x_{n+1}, x_n)\]
\[\leq \alpha D^*(x_n, x_{n+1}, x_{n+2}) + \alpha D^*(x_{n+1}, x_{n+2}, x_n)\]
\[= \alpha d_n + \alpha d_{n+1}\]
\[= (1 - \alpha) d_{n+1} + \alpha d_n\]
\[d_{n+1} \leq \frac{\alpha}{1 - \alpha} d_n\]
\[d_{n+1} \leq k d_n \text{ for all } n = 0, 1, 2, \ldots, \text{ where } k = \frac{\alpha}{1 - \alpha} < 1 \text{ (Since } \alpha < \frac{1}{2}\)
\[d_n \leq k d_{n-1}\]
\[\leq k^s d_0 \rightarrow 0 \text{ as } n \rightarrow \infty\]
SOME COMMON FIXED POINT THEOREMS...

Thus \(\lim_{n \to \infty} d_n = 0 \) Thus \(\lim_{n \to \infty} D^*(x_n, x_{n+1}, x_{n+2}) = 0 \)

Now we shall prove that \(\{x_n\} \) is a \(D^* \) - Cauchy sequence in \(X \).
Let \(m > n > n_0 \) for some \(n_0 \in \mathbb{N} \).
Now \(D^*(x_m, x_n, x_n) \leq D^*(x_m, x_n, x_{n+1}) + D^*(x_{n+1}, x_{n+2}) \)
\(\leq \sum_{k=n}^{\infty} D^*(x_k, x_{k+1}) \to 0 \) as \(m, n \to \infty \)

Thus \(\lim_{n,m \to \infty} D^*(x_n, x_n, x_m) = 0 \)

There fore \(\{x_n\} \) is \(D^* \) - Cauchy sequence in \(X \).
Since \(X \) is \(D^* \) - Complete \(x \) is a fixed point of \(T_1 \) suppr \(x \neq T_1 x \).
Then \(D^*(T_1 x, x, x) = \lim_{n \to \infty} D^*(T_1 x, x_{n+1}, x) \)
\(\leq \alpha \lim_{n \to \infty} D^*(x, x_{n+1}, x) \)
\(= 0 \).

There fore \(D^*(T_1 x, x, x) = 0 \). Therefore \(T_1 x = x \) Simillarly we can prove that \(T_2 x = x \).
Hence \(T_1 x = T_2 x = x \).Thus \(x \) is common fixed point of \(T_1 \) and \(T_2 \).

Uniqueness
Supper \(x \neq y \) such that \(T_1 y = T_2 y = y \)
Then \(D^*(x, y, y) = D^*(T_1 x, T_2 y, y) \)
\(\leq \alpha D^*(x, y, y) \)
This implies \((1-\alpha)D^*(x, y, y) \leq 0 \)
Since \(x \neq y \) we have \(D^*(x, y, y) > 0 \) her \((1-\alpha) < 0 \).
This implies \(\alpha > 1 \) which contraction to \(\alpha < \frac{1}{2} \).
Thus \(T_1 \) and \(T_2 \) have a unique common fixed point.

Theorem 2
Let \(X \) be a complete \(D^* \) - metric space and \(T_1, T_2, T_3 : X \to X \) be any three maps such that \(D^*(T_1 x, T_2 y, T_3 z) \leq \alpha D^*(x, y, z) \) for all \(x, y, z \in X \) and \(0 \leq \alpha < 1 \). Then \(T_1, T_2, T_3 \) have a unique common fixed point.

Proof
Let \(x_0 \in X \) he any fixed arbitrary element Define a sequence \(\{x_n\} \) in \(X \) as
\[x_{n+1} = T_1 x_n \]
\[x_{n+2} = T_2 x_{n+1} \]
\[x_{n+3} = T_3 x_{n+2} \]
for \(n = 0, 1, 2, \ldots \)
Let \(d_n = D^*(x_n, x_{n+1}, x_{n+2}) \)
\[d_1 = D^*(x_1, x_2, x_3) \]
\[= D^*(T_1 x_0, T_2 x_1, T_3 x_2) \]
\(\leq \alpha D^*(x_0, x_1, x_2) \)
\[d_2 = D^*(x_2, x_3, x_4) \]
\[= D^*(T_2 x_1, T_3 x_2, T_1 x_3) \]
\(\leq \alpha D^*(x_1, x_2, x_3) \)
\(\leq \alpha d_1 \),
\(\leq \alpha^2 d_0 \)
Continuing in thus way he get \(d_n \leq \alpha^n d_0 \to 0 \) as \(n \to \infty \) (since \(0 \leq \alpha < 1 \)).

Now we shall prove that \(\{x_n\} \) is a Cauchy sequence in \(X \).
Let \(d_{n+1} = D^*(x_n, x_{n+1}, x_{n+2}) \)
Then \(d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_{n+3}) \)
\(\leq D^*(x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}) \)
\(\leq d_n + d_n \)
\(d_{n+1}^* - d_n^* \leq d_n \leq \alpha^n d_0 \to 0 \) as \(n \to \infty \) (since \(0 \leq \alpha < 1 \))
\(d_{n+1}^* \leq d_n^* \) for all \(n \)
Hence \(\{d_n^* \} \) is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be \(d \).Then \(d_n^* \to d \) as \(n \to \infty \).
Now we shall prove that \(d = 0 \).Suppose \(d \neq 0 \).

1051
Now \(d = \lim_{n \to \infty} d_{n+2} \)
\[\leq \lim_{n \to \infty} \{ d_{n+1} + d_{n+1}^* \} \]
\[\leq \lim_{n \to \infty} \{ \alpha d_n + d_{n+1}^* \} \]
\[< \lim_{n \to \infty} \{ d_n + d_{n+1}^* \} \]
\[= d, \text{ which is contraction. Thus } d = 0. \]

Hence \(D^*(x_n, x_n, x_m) \to 0 \) as \(m, n \to \infty \)
Therefore \(\{x_n\} \) is a \(D^* \) Cauchy sequence in \(X \).
Since \(X \) is \(D^* \) complete \(x_n \to x \) in \(X \).

Now we prove that \(x \) is fixed point of \(T_1 \)
To prove that \(T_1x = x \)
Suppose \(T_1x \neq x \)
Then \(D^*(T_1x, x, y) = \lim_{n \to \infty} D^*(T_1x, x_{n+1}, x_{n+2}) \)
\[\leq \alpha \lim_{n \to \infty} D^*(x, x_{n+1}, x_{n+2}) \]
\[\leq \alpha D^*(x, x, x) = 0 \]
Thus \(T_1x = x \).
Similarly we can prove that \(T_2x = T_3x = x \).
Now we prove that \(x \) is a unique common fixed point of \(T_1, T_2, T_3 \)
Suppose \(x \neq y \) and \(T_1x = T_2x = T_3x = x \) & \(T_1y = T_2y = T_3y = y \)
Then \(D^*(x, y, y) = D^*(T_1x, T_2y, T_3y) \leq \alpha D^*(x, y, y) \)
This impulse \((1-\alpha)D^*(x, y, y) \leq 0 \)
Since \(x \neq y \) we have \(D^*(x, y, y) > 0 \)
This \((1-\alpha) < 0 \)
This impulse \(\alpha > 1 \) which in contradiction Hence \(T_1, T_2 \& T_3 \) have a unique common fixed point

Theorem 3
Let \(X \) be a \(D^* \) complete metric space and \(S, T X \to X \) be any two maps such that
\[D^*(STx, T x, y) \leq \alpha D^*(T x, x, y) \]
for all \(x, y \in X \) and \(0 \leq \alpha < \frac{1}{2} \). Then \(S \) and \(T \) have a unique common fixed point

Proof
Let \(x_0 \in X \) be any fixed arbitrary element. Define a sequence \(\{x_n\} \) in \(X \) as
\(x_{n+1} = Tx_n \)
\(x_{n+2} = Sx_{n+1} \) for \(n = 0, 1, 2, \ldots \)
Let \(d_n = D^*(x_n, x_{n+1}, x_{n+1}) \)
\(d_1 = D^*(x_1, x_2, x_2) = D^*(Tx_0, STx_0, x_2) \leq \alpha D^*(x_0, x_0, x_2) = \alpha D^*(x_0, x_1, x_2) \leq \alpha D^*(x_0, x_1, x_1) + \alpha D^*(x_1, x_2) = \alpha d_0 + \alpha d_1 \)
\((1-\alpha) d_1 \leq \alpha d_0 \)
\(d_1 \leq \frac{\alpha}{1-\alpha} d_0 \)
\(d_1 \leq \beta d_0 \) where \(\beta = \frac{\alpha}{1-\alpha} < 1 \) (Since \(0 \leq \alpha < \frac{1}{2} \).)
SOME COMMON FIXED POINT THEOREMS...

\[d_2 = D^*(x_2, x_1, x_3) \]
\[= D^*(STx_0, Tx_2, x_3) \]
\[\leq \alpha D^*(Tx_0, x_2, x_3) \]
\[= \alpha D^*(x_1, x_2, x_3) \]
\[\leq \alpha D^*(x_1, x_2, x_3) + \alpha D^*(x_2, x_3, x_3) \]
\[= \alpha d_1 + \alpha d_2 \]
\[(1-\alpha)d_2 \leq \alpha d_1 \]

Continuing in this way we get
\[d_n \leq \beta d_{n-1} \text{ for all } n>0. \]
\[\leq \beta^n d_0 \rightarrow 0 \text{ as } n \rightarrow \infty \text{ (since } \beta = \frac{\alpha}{1-\alpha} < 1). \]

Now we shall prove that \(\{x_n\} \) is a Cauchy sequence in X. Let \(m > n \) for some \(n \in \mathbb{N} \).
\[D^*(x_n, x_m, x_m) \leq \sum_{k=n}^{m-1} D^*(x_k, x_{k+1}, x_{k+1}) \]
\[= \sum_{k=n}^{m-1} d_k \]
\[\leq \beta^n \frac{1}{1-\beta} d_0 \rightarrow 0 \text{ as } n, m \rightarrow \infty \]

Therefore \(\{x_n\} \) is \(D^* \) Cauchy sequence in X Since X is \(D^* \) complete \(x_n \rightarrow x \) in X

Now we prove that \(Tx = x \)
Suppose \(Tx \neq x \)
\[D^*(Tx, x, x) = \lim_{n \rightarrow \infty} D^*(Tx, x_{n+2}, x) \]
\[= \lim_{n \rightarrow \infty} D^*(Tx, STx_n, x) \]
\[\leq \alpha \lim_{n \rightarrow \infty} D^*(x, Tx_n, x) \]
\[= \alpha \lim_{n \rightarrow \infty} D^*(x, x_{n+1}, x) \]
\[= 0 \]

Therefore \(Tx = x \).
Next to prove that \(Sx = x \)
\[D^*(STx, Tx, x) \leq \alpha D^*(T x, x, x) \]
\[= 0 \text{ (since } T x = x) \]
Thus \(STx = Tx = x \) Hence \(Sx = x \text{ (since } Tx = x) \)
Therefore \(x \) is common fixed point \(S \) & \(T \)
Suppose \(x \neq y \) Such that \(Sx = Tx = x \) and \(Sy = Ty = y \)
Then \[D^*(x, y) = D^*(STx, T x, y) \]
\[\leq \alpha D^*(Tx, y) \]
\[= \alpha D^*(x, y) \]
\[(1-\alpha) D^*(x, y) \leq 0 \]
Thus \(1 - \alpha < 0 \) This implies \(\alpha > 1 \) which is contradiction.
Therefore \(x = y \)
Hence \(x \) is a unique common fixed point.

Theorem 4:
Let \(X \) be a \(D^* \) complete metric space and \(R, S, T \in X \) be any three maps such that
\[D^*(RSTx, STx, Tx) \leq \alpha D^*(STx, Tx, x) \]
for all \(x \in X \) and \(0 \leq \alpha < 1 \). Then \(R, S \) and \(T \) have a unique common fixed point

Proof
Let \(x_0 \in X \) be any fixed arbitrary element Define a sequence \(\{x_n\} \) in \(X \) as
\[x_{n+1} = T x_n \]
Let \(d_0 = D^*(x_0, x_{n+1}, x_{n+2}) \)
\[
\begin{align*}
d_1 &= D^*(x_1, x_2, x_3) \\
&= D^*(Tx_0, STx_0, RSTx_0) \\
&\leq \alpha D^*(x_0, Tx_0, STx_0) \\
&\leq \alpha D^*(x_0, x_1, x_2) \\
\end{align*}
\]
\[
\begin{align*}
d_0 &= D^*(x_2, x_3, x_4) \\
&= D^*(Tx_1, STx_1, RSTx_1) \\
&\leq \alpha D^*(x_1, Tx_1, STx_1) \\
&\leq \alpha D^*(x_1, x_2, x_3) \\
&\leq \alpha d_1, \\
&\leq \alpha^2 d_0.
\end{align*}
\]
Continuing in this way we get
\[
\begin{align*}
d_n &\leq \alpha d_{n-1} \rightarrow 0 \text{ as } n \rightarrow \infty \text{ (since } 0 \leq \alpha < 1). \\
\end{align*}
\]
Now we shall prove that \(\{x_0\} \) is a Cauchy sequence in X.
Let \(d_n^* = D^*(x_n, x_n, x_{n+1}) \)
\[
\begin{align*}
d_n^* &= D^*(x_n, x_{n+1}, x_{n+2}) \\
&\leq D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}) \\
&\leq d_n + d_n^* \\
&\leq \alpha d_{n-1} \rightarrow 0 \text{ as } n \rightarrow \infty \text{ (since } 0 \leq \alpha < 1) \\
\end{align*}
\]
Hence \(\{d_n^*\} \) is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be d. Then \(d_n^* \rightarrow d \) as \(n \rightarrow \infty \).
Now we shall prove that \(d = 0 \). Suppose \(d \neq 0 \).
Now \(d = \lim_{n \rightarrow \infty} d_{n+2}^* \)
\[
\begin{align*}
&\leq \lim_{n \rightarrow \infty} d_{n+1}^* + d_{n+2}^* \\
&\leq \lim_{n \rightarrow \infty} \alpha d_{n+1}^* + d_{n+2}^* \\
&\leq \lim_{n \rightarrow \infty} \alpha d_n + d_{n+1}^* \\
&= d, \text{ which is contraction. Thus } d = 0.
\end{align*}
\]
Hence \(D^*(x_n, x_n, x_m) \rightarrow 0 \) as \(m, n \rightarrow \infty \)
Therefore \(\{x_n\} \) is a \(D^* \) Cauchy sequence in X.
Since X is \(D^* \) complete the sequence \(x_n \rightarrow x \) in X.
Now we prove that \(x \) is fixed point of \(T \)
To prove that \(Tx = x \)
Suppose \(Tx \neq x \)
Then \(D^*(Tx, x, x) = \lim_{n \rightarrow \infty} D^*(Tx, x_{n+2}, x_{n+3}) \)
\[
\begin{align*}
&= \lim_{n \rightarrow \infty} D^*(Tx, STx_0, RSTx_0) \\
&\leq \alpha \lim_{n \rightarrow \infty} D^*(x, x_{n+1}, x_{n+2}) \\
&= 0
\end{align*}
\]
Thus \(Tx = x \).
Now we can prove that \(Sx = x \).
Then \(D^*(x, Sx, x) = \lim_{n \rightarrow \infty} D^*(Tx, STx_0, x_{n+3}) \)
SOME COMMON FIXED POINT THEOREMS...

\[
\lim_{n \to \infty} D^*(Tx, STx, RSTx) = \bigtriangleup
\]

\[
\leq \alpha \lim_{n \to \infty} D^*(x, Tx, x_{n+2}) = \bigtriangleup
\]

\[
= \alpha \lim_{n \to \infty} D^*(x, x, x_{n+2}) = 0
\]

Thus \(Sx = x \).

Finally we prove that \(Rx = x \).

Then \(D^*(x, x, Rx) = D^*(Tx, STx, RSTx) \)

\[
\leq \alpha D^*(x, Tx, STx) = \bigtriangleup
\]

\[
= \alpha D^*(x, x, x) = 0
\]

Thus we prove that \(x \) is a unique common fixed point of \(R, S, T \).

Let \(x_0 \in X \) a fixed arbitrary element and define a sequence \(\{x_n\} \) in \(X \) as

\[
x_{n+1} = T_1 x_n
\]

\[
x_{n+2} = T_2 x_{n+1}
\]

\[
x_{n+3} = T_3 x_{n+2} \quad \text{for } n = 0, 1, 2, \ldots
\]

Let \(d_n = D^*(x_n, x_{n+1}, x_{n+2}) \).

Then \(d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_{n+3}) \)

\[
\leq a \left\{ D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_n, T_1 x_{n+1}, T_2 x_{n+1}) \right\}
\]

\[
= a \left\{ 2 D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}, x_{n+3}) \right\}
\]

\[
d_{n+1} \leq 2a d_n + a d_{n+1} - d_n \leq 2a d_n + \alpha d_{n+1} \leq [2a/(1-\alpha)] d_n
\]

\[
d_{n+1} \leq b d_n \quad \text{where } b = 2a/(1-\alpha) < 1.
\]

Hence \(d_n \leq b^n d_0 \to 0 \) as \(n \to \infty \).

Now we shall prove that \(\{x_n\} \) is a Cauchy sequence in \(X \).

Let \(d_n^* = D^*(x_n, x_{n+1}) \).

Then \(d_{n+1}^* = D^*(x_{n+1}, x_{n+2}, x_{n+3}) \)

\[
\leq a \left\{ D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_n, x_{n+1}, x_{n+1}) \right\}
\]

\[
= a \left\{ 2 D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}, x_{n+2}) \right\}
\]

\[
d_{n+1}^* \leq b d_n^* \quad \text{for all } n
\]

Hence \(\{d_n^*\} \) is monotonically decreasing sequence of positive real numbers and it converges to its glb. Let it be \(d \).

Now \(d = \lim_{n \to \infty} d_n^* \to d \) as \(n \to \infty \).

Now we shall prove that \(d = 0 \). Suppose \(d \neq 0 \).

\[
\lim_{n \to \infty} d_{n+1}^* \leq \lim_{n \to \infty} \left\{ d_{n+1} + d_{n+1}^* \right\}
\]

\[
\leq \lim_{n \to \infty} \left\{ b d_n + d_n^* \right\}
\]
To prove that $T_1 x = x$, we first prove that x is a unique common fixed point of T_1.

Let X be any three maps such that $D^*(x, y, z) = D^*(y, z, x)$ for all $x, y, z \in X$.

Theorem 2.3. Let X be a complete D^*-metric space and $T_1, T_2, T_3 : X \to X$ be any three maps such that $D^*(T_1 x, T_2 y, T_3 z) \leq a_1 D^*(x, y, z) + a_2 \{ D^*(x, T_1 x, T_2 y) + D^*(y, T_2 y, T_3 z) \}$

$$+ a_3 \{ D^*(x, y, T_3 z) + D^*(y, z, T_2 y) \}$$

for all $x, y, z \in X$, and $0 \leq a_1 + 2a_2 + 2a_3 < 1$. Then T_1, T_2, and T_3 have a unique common fixed point.

Proof.

Let $x_0 \in X$ be a fixed arbitrary element and define a sequence $\{ x_n \}$ in X as

- $x_n = T_1 x_{n-1}$,
- $x_{n+1} = T_2 x_n$, and $x_{n+2} = T_3 x_{n+1}$ for $n = 0, 1, 2, \ldots$.

Let $d_n = D^*(x_n, x_{n+1}, x_{n+2})$.

Then $d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_{n+3})$

$$= D^*(T_1 x_n, T_2 x_{n+1}, T_3 x_{n+2})$$

$$\leq a_1 D^*(x_{n+1}, x_{n+2}, x_{n+3}) + a_2 \{ D^*(x_n, T_1 x_n, T_2 x_{n+1}) + D^*(x_{n+1}, T_2 x_{n+1}, T_3 x_{n+2}) \}$$

$$+ a_3 \{ D^*(x_{n+1}, x_{n+2}, x_{n+3}) + D^*(x_n, x_{n+1}, x_{n+2}) \}$$

$$\leq a_1 + 2a_2 + 2a_3 \} D^*(x_n, x_{n+1}, x_{n+2}) + (a_2 + a_3) \} D^*(x_{n+1}, x_{n+2}, x_{n+3})$$

$$\leq a_1 + a_2 + a_3 \} d_n + (a_2 + a_3) \} d_{n+1}$$

$$(1 - a_2 - a_3) \} d_{n+1} \leq (a_1 + a_2 + a_3) \} d_n$$

$$d_{n+1} \leq \frac{(a_1 + a_2 + a_3) \} d_n}{(1 - a_2 - a_3)}.$$
THEORY 2.5. Let X be a complete D* - metric space and T1, T2, T3 : X \to X be any three maps such that D*(T1x, T2y, T3z) \leq \max{D*(x, y, z), D*(x, T1x, T2y), D*(y, T1x, T2y), D*(z, T1x, T2y), D*(y, z, T3z)} for all x, y, z \in X, and 0 \leq a < 1. Then T1, T2, and T3 have a unique common fixed point.

Proof.
Let x0 \in X a fixed arbitrary element and define a sequence {xn} in X as
Let \(d_n = \max \{ D^*(x_n, x_{n+1}, x_{n+2}) \} \)
Then \(d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_{n+3}) \)
\[\leq a \max \{ D^*(x_n, x_{n+1}, x_{n+2}) \} \]
\[= a \max \{ D^*(x_n, x_{n+1}, x_{n+2}) \} \]
\[= a \max \{ D^*(x_n, x_{n+1}, x_{n+2}) \} \]
\[\leq a \max \{ D^*(x_n, x_{n+1}, x_{n+2}) \} \]
\[\leq a \max \{ d_n, d_{n+1} \} \]
\[d_{n+1} \leq d_n \text{ for all } n \]
Hence \(d_n \leq a^n d_0 \rightarrow 0 \text{ as } n \rightarrow \infty \)
Now we prove that \(\{x_n\} \) is \(D^* \) - Cauchy sequence in \(X \).
Let \(d_{n+1}^* = D^*(x_{n+1}, x_{n}, x_{n+1}) \)
Then
\[d_{n+1}^* = D^*(x_{n+1}, x_{n+2}, x_{n+3}) \]
\[\leq D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_n, x_{n+1}, x_{n+1}) \]
\[\leq d_n + d_n^* \]
\[d_{n+1}^* - d_n^* \leq d_n \leq a^\alpha d_{n+1} \rightarrow 0 \text{ as } n \rightarrow \infty \text{ (since } 0 \leq \alpha < 1) \]
\[d_{n+1}^* \leq d_n^* \text{ for all } n \]
Hence \(\{ d_n^* \} \) is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be \(d \). Then \(d_n^* \rightarrow d \text{ as } n \rightarrow \infty \).
Now we shall prove that \(d = 0 \). Suppose \(d \neq 0 \).
Now \(d = \lim_{n \rightarrow \infty} \frac{d_{n+2}^*}{d_n} \)
\[\leq \lim_{n \rightarrow \infty} \frac{\{ d_{n+1} + d_{n+1}^* \}}{d_n} \]
\[\leq \lim_{n \rightarrow \infty} \frac{\{ d_n + d_n^* \}}{d_n} \]
\[\leq \lim_{n \rightarrow \infty} \frac{d_n + d_n^*}{d_n} \]
\[= d \]
Now we prove that \(\{x_n\} \) is \(D^* \) - Cauchy sequence in \(X \).
For \(m > n \) we have,
\[D^*(x_n, x_{n+1}, x_{n+2}) \leq D^*(x_n, x_{n+1}, x_{n+1}) + D^*(x_{n+1}, x_{n+1}, x_{n+1}) + \ldots + D^*(x_{n+m-1}, x_{n-1}, x_{n+m}) \]
\[= 0 \text{ as } m, n \rightarrow \infty \]
Thus \(\{x_n\} \) is a \(D^* \) Cauchy sequence in \(X \) and \(X \) is \(D^* \) - complete \(x_n \rightarrow x \) in \(X \).
Now we shall prove that \(T_x = x \)
\[D^*(T_1x, x, x) = \lim_{n \rightarrow \infty} D^*(T_1x, x_{n+2}, x_{n+3}) \]
\[= \lim_{n \rightarrow \infty} D^*(T_1x, T_2x_{n+1}, T_3x_{n+2}) \]
\[\leq a \lim_{n \rightarrow \infty} \max \{ D^*(x, x_{n+1}, x_{n+2}) \} \]
\[\leq a \lim_{n \rightarrow \infty} \max \{ D^*(x, x_{n+1}, x_{n+2}) \} \]
\[\leq a \max \{ D^*(x, x_{n+1}, x_{n+2}) \} \]
\[< D^*(T_1x, x, x) \]
Which is a contradiction.
Thus \(T_1x = x \).
Similarly we can prove that \(T_2x = T_3x = x \).
Now we prove that \(x \) is a unique common fixed point of \(T_1, T_2, T_3 \)
Suppose \(x \neq y \) and \(T_1x = T_2x = T_3x = x \) & \(T_1y = T_2y = T_3y = y \)
Then \(D^*(x,y,y) = D^*(T_1x, T_2y, T_3y) \)
To prove that \(T_1 \) has a unique common fixed point, let \(T_1, T_2 \) be any three maps such that
\[
\text{SOME COMMON FIXED POINT THEOREMS...}
\]

\[
\leq a \max \{ D^*(x, y, y), \ D^*(x, T_1x, y), D^*(y, T_2y, y), D^*(y, T_2y, T_2y) \}
\]

\[
= a \max \{ D^*(x, y, y), D^*(x, y, y), D^*(x, y, y), D^*(y, y, y) \}
\]

which is contradiction. Hence \(T_1, T_2 \) have a unique common fixed point.

Theorem 2.6.

Let \(X \) be a complete \(D^* \) - metric space and \(T_1, T_2, T_3 : X \rightarrow X \) be any three maps such that
\[
D^* (T_1x, T_2x, T_3x) \leq a_1 D^* (x, y, z) + a_2 \max \{ D^*(x, T_1x, T_2x), D^*(y, T_2y, T_3y) \}
\]

for all \(x, y, z \in X \) and \(0 \leq a_1 + 2a_2 < 1 \). Then \(T \) has a unique fixed point.

Proof.

Let \(x_0 \in X \) be an arbitrary element and define a sequence \(\{x_n\} \) in \(X \) as
\[
x_{n+1} = T_1x_n
\]

\[
x_{n+2} = T_2x_{n+1}
\]

\[
x_{n+3} = T_3x_{n+2}
\]

for \(n = 0, 1, 2, \ldots \).

Let \(d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_{n+3}) \).

Then
\[
d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_{n+3})
\]

\[
= a_1 D^*(x_n, T_1x_n, T_2x_n, T_3x_n) + a_2 \max \{ D^*(x_n, T_1x_n, T_2x_n), D^*(x_n, T_2x_n, T_3x_n) \}
\]

\[
= a_1 \{ D^*(x_{n+1}, x_{n+2}) + a_2 \max \{ D^*(x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}) \} \}
\]

\[
\leq 2a_1 d_n + a_2 d_{n+1}
\]

\[
d_{n+1} \leq b d_n \quad \text{where } b = \{ 2a_1 \} + 1.
\]

Hence \(d_n \leq b d_0 \rightarrow 0 \) as \(n \rightarrow \infty \).

Now we shall prove that \(\{x_n\} \) is a Cauchy sequence in \(X \).

Let
\[
d_n = D^*(x_n, x_{n+1}, x_{n+1})
\]

Then
\[
d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_{n+3})
\]

\[
\leq D^*(x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+1})
\]

\[
\leq d_{n+1} + d_n
\]

\[
d_{n+1} \leq d_{n+1} \alpha d_n \rightarrow 0 \quad \text{as } n \rightarrow \infty \quad \text{since } 0 \leq \alpha < 1.
\]

Hence \(\{d_n\} \) is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be \(d \) . Then \(d_n \rightarrow d \) as \(n \rightarrow \infty \).

Now we shall prove that \(d = 0 \) . Suppose \(d \neq 0 \).

Now \(d = \lim_{n \rightarrow \infty} d_{n+1} \) and
\[
\leq \lim_{n \rightarrow \infty} \{ d_{n+1}, d_n \}
\]

\[
\leq \lim_{n \rightarrow \infty} \{ b d_n, d_{n+1} \}
\]

\[
\leq \lim_{n \rightarrow \infty} \{ d_n, d_{n+1} \}
\]

\(= d \) . Hence \(d = 0 \) .

Therefore \(\{x_n\} \) is a \(D^* \) Cauchy sequence in \(X \).

Now we prove that \(x \) is a fixed point of \(T_1 \).

To prove that \(T_1x = x \) let \(T_1x = x \).

Suppose \(T_1x \neq x \) . Then
\[
D^*(T_1x, x, x) = \lim_{n \rightarrow \infty} D^*(T_1x, x_{n+1}, T_2x_{n+2})
\]

\[
= \lim_{n \rightarrow \infty} D^*(T_1x, T_2x_{n+1}, T_3x_{n+2})
\]

1059
Corollary 2.8.

Now we prove that x is a unique common fixed point of T. Suppose $x \neq y$ and $T_x = T_y = x \neq y$.

Then $D^*(x,y) = D^*(x,x)$. Then $d \leq a_1 D^*(x,y)$. Hence T has a unique fixed point.

Remark 2.7.

Let x_0, x_1, x_2, x_3 be any three maps such that $D^*(x_0, x_1, x_2, x_3)$ is a unique common fixed point.

Theorem 2.11.

Let X be a complete D^*-space and T_1, T_2, $T_3 : X \to X$ be any three maps such that $D^*(T_1, T_2, T_3)$ is a unique common fixed point.

Proof.

Let $x_0 \in X$ be an arbitrary element and define a sequence $\{x_n\}$ in X as

\[
x_n = T_1 x_{n-1} = T_2 x_{n-2} = T_3 x_{n-3}, \quad n = 0, 1, 2, \ldots
\]

Then $d_n = D^*(x_n, x_{n+1}, x_{n+2})$.

Then $d_n = D^*(x_n, x_{n+1}, x_{n+2})$.

\[
\lim_{n \to \infty} d_n = \lim_{n \to \infty} |d_1 D^*(x_n, x_{n+1}, x_{n+2}) + d_2 \max \{D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3})\} | \leq \lim_{n \to \infty} a_1 D^*(x_n, x_{n+1}, x_{n+2}) + a_2 \max \{D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3})\} \leq a_2 D^*(x, T_x, x)
\]

Similarly we can prove that $T_3 x = x$.

Hence T_1, T_2, T_3 have a unique common fixed point.

Corollary 2.8.

Let (X, D^*) be a complete D^*-metric space and $T : X \to X$ be a map such that $D^*(x, y, z) \leq a D^*(x, y, z)$ for all $x, y, z \in X$ and $0 \leq a < 1$. Then T has a unique fixed point. The above theorem is known as Banach contraction Type Theorem in D^*-metric space.

Remark 2.9.

If we put $a_1 = 0$ and $a_2 = a$ in the above theorem 1. We get the following theorem as corollary 2.10.

Corollary 2.10.

Let (X, D^*) be a complete D^*-metric space and $T : X \to X$ be a map such that $D^*(x, y, z) \leq a_1 D^*(x, y, z) + a_2 \max \{D^*(x, y, z), D^*(x, z, T_y), D^*(y, z, T_z)\}$ for all $x, y, z \in X$ and $0 \leq a < 1$. Then T has a unique fixed point.

Theorem 2.11.

Let X be a complete D^*-metric space and T_1, T_2, $T_3 : X \to X$ be any three maps such that $D^*(T_1, T_2, T_3) \leq a_1 D^*(x, y, z) + a_2 \max \{D^*(x, y, z), D^*(x, z, T_y), D^*(y, z, T_z)\}$

\[
+ a_3 \max \{D^*(x, y, T_y) + D^*(y, z, T_z)\}
\]

for all $x, y, z \in X$, and $0 \leq a_1 + 2a_2 + 3a_3 < 1$. Then T_1, T_2, and T_3 have a unique common fixed point.

Proof.

Let $x_0 \in X$ be an arbitrary element and define a sequence $\{x_n\}$ in X as

\[
x_n = T_1 x_{n-1} = T_2 x_{n-2} = T_3 x_{n-3}, \quad n = 0, 1, 2, \ldots
\]

Then $d_n = D^*(x_n, x_{n+1}, x_{n+2})$.

Then $d_n = D^*(x_n, x_{n+1}, x_{n+2})$.

\[
\lim_{n \to \infty} d_n = \lim_{n \to \infty} |d_1 D^*(x_n, x_{n+1}, x_{n+2}) + d_2 \max \{D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3})\} | \leq \lim_{n \to \infty} a_1 D^*(x_n, x_{n+1}, x_{n+2}) + a_2 \max \{D^*(x_n, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, x_{n+3})\} \leq a_2 D^*(x, T_x, x).
\]

Similarly we can prove that $T_3 x = x$.

Hence T_1, T_2, T_3 have a unique common fixed point.
To prove that \(T_1 = H \), hence \(T < D^*(x, y, y) \), which is contradiction. Thus \(d = 0 \).

Now we shall prove that \(d = 0 \). Suppose \(d \neq 0 \).

Now \(d = \lim_{n \to \infty} d_{n+1}^* \)

\[
\begin{align*}
d_{n+1}^* - d_n^* & \leq d_n = \alpha \cdot d_{n-1} \to 0 \text{ as } n \to \infty \text{ (since } 0 \leq \alpha < 1) \\
d_n^* & \leq d_m^* \text{ for all } n
\end{align*}
\]

Hence \(\{ d_n^* \} \) is monotonically decreasing sequence of positive real number and it converges to its glb. Let it be \(d \). Then \(d_n^* \to d \) as \(n \to \infty \).

Now we shall prove that \(d = 0 \). Suppose \(d \neq 0 \).

For \(m > n \), we have

\[
\begin{align*}
D^*(x_n, x_{n+1}) & \leq D^*(x_n, x_m) + D^*(x_m, x_{n+1}) \\
& \leq D^*(x_n, x_m) + D^*(x_m, x_{n+2}) + \ldots + D^*(x_{m+1}, x_{n+1}) \\
& \to 0 \text{ as } n, m \to \infty . \text{ Hence } D^*(x_n, x_m) \to 0 \text{ as } m \to \infty
\end{align*}
\]

Therefore \(\{ x_n \} \) is a \(D^* \) Cauchy sequence in \(X \).

Since \(X \) is \(D^* \) complete \(x_n \to x \) in \(X \)

Now we prove that \(x \) is fixed point of \(T_1 \).

To prove that \(T_1 x = x \).

Suppose \(T_1 x \neq x \), Then

\[
\begin{align*}
D^*(T_1 x, x) &= \lim_{n \to \infty} D^*(T_1 x, x_{n+1}) \\
& = \lim_{n \to \infty} D^*(T_1 x, T_2 x_{n+1}, T_3 x_{n+2}) \\
& \leq \lim_{n \to \infty} \{ a_1 D^*(x, x_{n+1}, x_{n+2}) + a_2 \max \{ D^*(x, T_1 x, T_2 x_{n+1}), D^*(x_{n+1}, T_2 x_{n+1}, T_3 x_{n+2}) \} + a_3 \max \{ D^*(x, x_{n+1}, x_{n+2}), D^*(x_{n+1}, x_{n+2}, T_3 x_{n+2}) \} \} \\
& \leq a_2 \max \{ D^*(x, x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}, T_3 x_{n+2}) \} \\
& < D^*(x, T_1 x, x), \text{ which is contradiction. Thus } T_1 x = x .
\end{align*}
\]

Similarly we can prove that \(T_2 x = T_3 x = x \).

Now we prove that \(x \) is a unique common fixed point of \(T_1, T_2, T_3 \).

Suppose \(x \neq y \) and \(T_1 x = T_2 x = T_3 x = x \) and \(T_1 y = T_2 y = T_3 y = y \).

Then

\[
\begin{align*}
D^*(x, y) &= D^*(T_1 x, T_2 y, T_3 y) \\
& \leq a_1 D^*(x, y, y) + a_2 \max \{ D^*(x, T_1 x, T_2 y), D^*(y, T_1 y) \} + a_3 \max \{ D^*(x, y, T_1 y) \} \\
& = a_1 D^*(x, y, y) + a_2 \max \{ D^*(x, y, y) \} + a_3 \max \{ D^*(x, y, y) \} \\
& = (a_1 + a_2 + a_3) D^*(x, y, y) \\
& < D^*(x, y, y), \text{ which is contradiction.}
\end{align*}
\]

Hence \(T_1, T_2, T_3 \) have a unique common fixed point.

Theorem 2.12. Let \(X \) be a complete \(D^* \) metric space and \(T_1, T_2, T_3 : X \to X \) be any three maps such that

\[
D^*(T_1 x, T_2 y, T_3 z) \leq \max \{ D^*(x, y, z), 1/2 \{ D^*(x, T_1 x, T_2 y) + D^*(y, T_2 y, T_3 z) \} \} \text{ for all } x, y, z \in X , \text{ and } 0 \leq a < 1/3.
\]

Then \(T_1, T_2, \) and \(T_3 \) have a unique common fixed point.

Proof.

Let \(x_0 \in X \) a fixed arbitrary element and define a sequence \(\{ x_n \} \) in \(X \) as

\[
\begin{align*}
x_{n+1} &= T_1 x_n \\
x_{n+2} &= T_2 x_{n+1} \\
x_{n+3} &= T_3 x_{n+2} \text{ for } n = 0, 1, 2, \ldots
\end{align*}
\]

\[1061\]
Let \(d_n = D^*(x_n, x_{n+1}, x_{n+2}) \).
Then \(d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_{n+3}) \)
\[\leq \max \{ D^*(x_n, x_{n+1}, x_{n+2}), \frac{1}{2} \{ D^*(x_n, T_1 x_n, T_2 x_{n+1}, T_3 x_{n+2}) \} \} \]
\[= \max \{ D^*(x_n, x_{n+1}, x_{n+2}), \frac{1}{2} \{ D^*(x_n, T_1 x_n, T_2 x_{n+1}, T_3 x_{n+2}) \} \} \]
\[\leq \frac{1}{2} \left\{ \frac{1}{2} \left\{ D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}, x_{n+3}) \right\} \right\} \]
\[\leq \frac{1}{2} \left\{ D^*(x_n, x_{n+1}, x_{n+2}) \right\} \]
\[\leq a d_n, \quad \frac{1}{2} (d_n, d_{n+1}, d_{n+2}) \]
\[d_{n+1} \leq a(3d_n + 1/2 d_{n+1}) \]
\[d_{n+1} \leq a(3d_n) \quad \text{for all } n \]
Hence \(d_n \rightarrow 0 \) as \(n \rightarrow \infty \).
Now we prove that \(\{x_n\} \) is \(D^* \)-Cauchy sequence in \(X \).
Let \(d_n = D^*(x_n, x_{n+1}, x_{n+2}) \)
Then \(d_{n+1} = D^*(x_{n+1}, x_{n+2}, x_{n+3}) \)
\[\leq D^*(x_n, x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}, x_{n+3}) \]
\[\leq d_n + d_n \]
\[d_{n+1} - d_n \leq \alpha d_n \rightarrow 0 \quad (\text{since } 0 \leq \alpha < 1) \]
\[d_{n+1} \leq d_n \quad \text{for all } n \]
Hence \(\{d_n\} \) is a monotonically decreasing sequence of positive real numbers and it converges to its glb. Let it be \(d \).
Then \(d_n \rightarrow d \) as \(n \rightarrow \infty \).
Now we shall prove that \(d = 0 \).
Suppose \(d \neq 0 \).
Now \(d = \lim_{n \rightarrow \infty} d_{n+1} \)
\[\leq \lim_{n \rightarrow \infty} \{d_{n+1} + d_{n+2}\} \]
\[\leq \lim_{n \rightarrow \infty} \{d_n + d_{n+1}\} \]
\[= d \]
Now we prove that \(\{x_n\} \) is \(D^* \)-Cauchy sequence in \(X \).
For \(m > n \) we have,
\[D^*(x_n, x_m) \leq D^*(x_n, x_{n+1}) + D^*(x_{n+1}, x_{n+2}) + \ldots + D^*(x_{m-1}, x_m) \]
\[\rightarrow 0 \quad \text{as } m, n \rightarrow \infty \]
Thus \(\{x_n\} \) is a \(D^* \)-Cauchy sequence in \(X \) and \(X \) is \(D^* \)-complete \(x \rightarrow x \) in \(X \).
Now we shall prove that \(T_1 x = x \)
\[D^*(T_1 x, x, x) = \lim_{n \rightarrow \infty} D^*(T_1 x, x_{n+2}, x_{n+3}) \]
\[= \lim_{n \rightarrow \infty} D^*(T_1 x, T_2 x_{n+1}, T_3 x_{n+2}) \]
\[\leq a \lim_{n \rightarrow \infty} \max \{D^*(x, x_{n+1}, x_{n+2}), \frac{1}{2} \{D^*(x, T_1 x, T_2 x_{n+1}, T_3 x_{n+2}) + D^*(x_{n+1}, x_{n+2}, x_{n+3}) \}\} \]
\[\leq a \max \{D^*(x, x_{n+1}, x_{n+2}) + D^*(x_{n+1}, x_{n+2}, x_{n+3}) \} \]
\[< D^*(T_1 x, x, x) \], Which is a contradiction.
Thus \(T_1 x = x \).
Similarly we can prove that \(T_2 x = T_3 x = x \).
Now we prove that \(x \) is a unique common fixed point of \(T_1, T_2, T_3 \).
Suppose \(x \neq y \) and \(T_1 x = T_2 x = T_3 x = x \) & \(T_1 y = T_2 y = T_3 y = y \).
Then \(D^*(x, y, y) = D^*(T_1 x, T_2 y, T_3 y) \)
\[\leq \max \{D^*(x, y, y), \frac{1}{2} \{D^*(x, T_1 x, T_2 y, T_3 y) + D^*(y, T_1 y, T_2 y, T_3 y) \} \}\]
SOME COMMON FIXED POINT THEOREMS...

\[a \max \{ D^*(x, y, y), 1/2 D^*(x, x, y), 1/2 D^*(x, y, y) \} = a \ D^*(x, y, y) \]

which is contradiction.

Hence \(T_1, T_2 \& T_3 \) have a unique common fixed point.

Theorem 2.6.

Let \(X \) be a complete \(D^* \)-metric space and \(T_1, T_2, T_3 : X \rightarrow X \) be any three maps such that

\[D^*(T_1x, T_2y, T_3z) \leq a_1 D^*(x, y, z) + a_2 \max \{ D^*(x, T_1x , T_2y), D^*(y, T_2y , T_3z) \} + a_3 \max \{ D^*(x, y, T_3z), D^*(y, z, T_3z) \} \]

for all \(x, y, z \in X \) and \(0 \leq a_1 + 2a_2 + 2a_3 < 1 \). Then \(T \) has a unique fixed point.

References