SECOND HANKEL DETERMINANT FOR SOME SUBCLASSES OF ANALYTIC FUNCTIONS

T. Thulasiram\(^1\), K. Suchithra\(^2\) and R. Sattanathan\(^3\)

\(^1,2\) Department of Mathematics
A.M. Jain College, Chennai-114, Tamil Nadu, India

\(^3\) Department of Mathematics
D.G. Vaishnav College, Arumbakkam, Chennai-106, Tamil Nadu, India

Abstract

Sharp bounds for the functional \(\left| a_2 a_4 - a_3^2 \right| \) are derived for functions belonging to the classes \(M (\alpha) \) and \(N (\lambda) \). Also certain application of the main results for a class of functions defined by convolution is given. As a special case, the coefficient bounds for a class of functions defined through fractional derivatives are obtained.

Key Words: Analytic functions, Starlike functions, convex functions, Hankel determinant, Fractional derivative.

2000 Mathematics Subject Classification: Primary 30C45.

1 INTRODUCTION

Let \(A \) denote the class of normalized analytic Univalent functions \(f \) of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

(1.1)

Where \(z \in D = \{z : |z| < 1\} \). In [10], the \(q^{th} \) Hankel determinant for \(q \geq 1 \) and \(n \geq 0 \) is stated by Noonan and Thomas as
This determinant has also been considered by several authors. For example, Noor in [11] determined the rate of growth of \(H_q(n) \) as \(n \to \infty \) for functions \(f \) given by (1.1) with bounded boundary. Ehrenborg in [3] studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some of its properties were discussed by Leyman in [7].

Easily, one can observe that the Fekete and Szegő functional is \(H_2(1) \). Fekete and Szegő [4] then further generalized the estimate \(\left| a_3 - \mu a_2^2 \right| \) where \(\mu \) is real and \(f \in A \). For our discussion in this paper, we consider the Hankel determinant in the case \(q = 2 \) and \(n = 2 \), which is

\[
H_2(n) = \begin{vmatrix}
a_n & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & \ldots & \ldots & \\
\ldots & \ldots & \ldots & \\
a_{n+q-1} & \ldots & \ldots & a_{n+2q-2} \\
\end{vmatrix}.
\]

A function \(f \in A \) is said to be starlike and convex respectively if and only if, for \(z \in D \),

\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad \text{and} \quad \Re \left\{ \frac{(zf'(z))'}{f'(z)} \right\} > 0.
\]

By usual notations, we denote these classes of functions respectively by \(S^* \) and \(C \).

In the present paper, we obtain an upper bound for the functional \(|a_3 a_4 - a_5^2| \) for functions belongs to the class \(M(\alpha) \) and \(N(\lambda) \), which are defined as follows.

Definition 1.1 Let \(f \) be given by (1.1). Then \(f \in M(\alpha) \) if and only if

\[
\Re \left\{ \frac{zf'(z) + \alpha z^2 f''(z)}{(1 - \alpha) f(z) + \alpha zf'(z)} \right\} > 0, \quad 0 \leq \alpha \leq 1, \quad z \in D.
\]

(1.2)

We see that \(M(0) = S^* \), the class of starlike functions and \(M(1) = C \), the class of convex functions.

Definition 1.2 : Let \(f \) be given by (1.1). Then \(f \in N(\lambda) \) if and only if

\[
\Re \left\{ \frac{\lambda z^3 f'''(z) + (1 + 2\lambda)z^2 f''(z) + zf'(z)}{\lambda z^2 f''(z) + zf'(z)} \right\} > 0, \quad 0 \leq \lambda \leq 1, \quad z \in D.
\]

(1.3)

We note that \(N(0) = C \), the class of convex functions.
The definitions of the classes \(M(\alpha) \) and \(N(\lambda) \) are motivated by the classes studied by \([2, 17]\) and \([6, 18]\) respectively.

For fixed \(g \in A \), we define the class \(M_g(\alpha) \) to be the class of functions \(f \in A \) for which \((f \ast g) \in M(\alpha)\) and the class \(N_g(\lambda) \) to be the class of functions \(f \in A \) for which \((f \ast g) \in N(\lambda)\).

In order to introduce the above mentioned classes we need the following:

Definition 1.3 (See \([10,11]\); see also \([13,14]\)) Let the function \(g(\zeta) \) be analytic in a simply connected region of the \(\zeta \)-plane containing the origin. Then the fractional derivative of \(f \) of order \(\gamma \) is defined by

\[
D_\gamma f(z) = \frac{1}{\Gamma(1-\gamma)} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\gamma}} d\zeta, \quad (0 \leq \gamma < 1). \tag{1.4}
\]

Where the multiplicity of \((z-\zeta)^\gamma \) is removed by requiring \(\log(z-\zeta) \) to be real when \((z-\zeta) > 0 \).

Using the above definition (1.3) and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava \([13]\) introduced the operator

\[\Omega^\gamma : A \rightarrow A \]

defined by \((\Omega^\gamma f)(z) = \Gamma(2-\gamma)z^\gamma D_\gamma f(z), \quad (\gamma \neq 2, 3, 4, \ldots)\).

The class \(M_\gamma(\alpha) \) consists of functions \(f \in A \) for which \(\Omega^\gamma f \in M(\alpha) \) and the class \(N_\gamma(\lambda) \) consists of functions \(f \in A \) for which \(\Omega^\gamma f \in M(\alpha) \). \(M_\gamma(\alpha) \) and \(N_\gamma(\lambda) \) are the special cases of the classes \(M_g(\alpha) \) and \(N_g(\lambda) \) when \(g(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\gamma)}{\Gamma(n+1-\gamma)} \frac{z^n}{n} \).

Let \(P \) be the family of all functions \(p \) analytic in \(D \) for which \(\Re\{p(z)\} > 0 \) and

\[p(z) = 1 + c_1 z + c_2 z^2 + \ldots, \quad z \in D. \tag{1.5} \]

To prove our main result, we need the following:

Lemma 1.1 (\([14]\)) If \(p \in P \) then \(|c_k| \leq 2 \) for each \(k \).

Lemma 1.2 (\([5]\)) The power series for \(p(z) \) given by (1.5) converges in \(D \) to a function in \(P \) if and only if the Toeplitz determinants

\[
D_n = \begin{vmatrix}
2 & c_1 & c_2 & \ldots & c_n \\
c_{-1} & 2 & c_1 & \ldots & c_{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+1} & \ldots & 2
\end{vmatrix}, \quad n = 1, 2, 3, \ldots \tag{1.6}
\]
and \(c_{-k} = \overline{c_k} \) are all nonnegative. They are strictly positive except for

\[
p(z) = \sum_{k=1}^{m} \rho_k \rho_0 e^{i \theta k z}, \quad \rho_k > 0, \quad t_k \text{ real}
\]

and \(t_k \neq t_j \) for \(k \neq j \), in this case \(D_n > 0 \) for \(n < m - 1 \) and \(D_n = 0 \) for \(n \geq m \).

Lemma 1.3 ([8,9]) Let the function \(p \in P \) be given by power series (1.5).

Then

\[
2c_2 = c_1^2 + x(4 - c_1^2) \quad (1.7)
\]

for some \(x \), \(|x| \leq 1 \) and

\[
4c_2 = c_1^2 + 2(4 - c_1^2)c_1x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)z. \quad (1.8)
\]

2. Main Results

Theorem 2.1 Let \(f(z) \in M(\alpha) \). Then

\[
|a_2a_4 - a_3^2| \leq \frac{1}{(1 + \alpha)(1 + 3\alpha)}. \quad (2.1)
\]

The result obtained is sharp.

Proof: For \(f(z) \in M(\alpha) \) given by (1.1), there exists a \(p \in P \) such that

\[
\left[zf'(z) + \alpha z^2 f''(z) \right] = \left[(1 - \alpha)f(z) + \alpha z f'(z) \right] p(z).
\]

Then equating the coefficients, we obtain

\[
a_2 = \frac{c_1}{1 + \alpha}, \quad a_3 = \frac{c_1^2 + c_2}{2(1 + 2\alpha)}, \quad a_4 = \frac{c_1^3}{6(1 + 3\alpha)} + \frac{c_1c_2}{2(1 + 3\alpha)} + \frac{c_3}{3(1 + 3\alpha)}.
\]

Thus we have

\[
|a_2a_4 - a_3^2| \leq \frac{1}{12} \left[\frac{4c_1c_3}{(1 + \alpha)(1 + 3\alpha)} + c_1^2c_2 \left(\frac{6}{(1 + \alpha)(1 + 3\alpha)} - \frac{6}{(1 + 2\alpha)^2} \right) - \frac{3c_2^2}{(1 + 2\alpha)^2} - c_1^4 \left(\frac{3}{(1 + 2\alpha)^2} - \frac{2}{(1 + \alpha)(1 + 3\alpha)} \right) \right]. \quad (2.2)
\]

Substituting for \(c_2 \) and \(c_3 \) using Lemma 1.3, we obtain
\[\left| a_2 a_4 - a_3^2 \right| \]
\[= \frac{1}{12} \left| x c_1^2 (4 - c_1^2) \left(\frac{5}{(1 + \alpha)(1 + 3 \alpha)} - \frac{9}{2(1 + 2 \alpha)^2} \right) - c_1^4 \left(\frac{27}{4(1 + 2 \alpha)^2} - \frac{6}{(1 + \alpha)(1 + 3 \alpha)} \right) + \frac{2(4 - c_1^2) c_3 (1 - |x|^2) z}{(1 + \alpha)(1 + 3 \alpha)} - x^2 (4 - c_1^2) \left(\frac{c_1^2}{(1 + \alpha)(1 + 3 \alpha)} + \frac{3(4 - c_1^2)}{4(1 + 2 \alpha)^2} \right) \right| . \] (2.3)

With \(|c_1| \leq 2 \) from Lemma 1.1, we get \(c_1 = c \) and assume without restriction that \(c \in [0, 2] \). Thus applying the triangle inequality on (2.3) with \(\rho = |x| \leq 1 \), we obtain

\[\left| a_2 a_4 - a_3^2 \right| \leq \frac{1}{12} \left\{ \rho c^2 (4 - c^2) \left(\frac{5}{(1 + \alpha)(1 + 3 \alpha)} - \frac{9}{2(1 + 2 \alpha)^2} \right) + c^4 \left(\frac{27}{4(1 + 2 \alpha)^2} - \frac{6}{(1 + \alpha)(1 + 3 \alpha)} \right) + \frac{2(4 - c^2) \rho c^3 (1 - |x|^2) z}{(1 + \alpha)(1 + 3 \alpha)} + x^2 (4 - c^2) \left(\frac{c^2 - 2c}{(1 + \alpha)(1 + 3 \alpha)} + \frac{3(4 - c^2)}{4(1 + 2 \alpha)^2} \right) \right\} = F(\rho) . \] (2.4)

Furthermore,

\[F'(\rho) = \frac{1}{12} \left\{ c^2 (4 - c^2) \left(\frac{5}{(1 + \alpha)(1 + 3 \alpha)} - \frac{9}{2(1 + 2 \alpha)^2} \right) + 2 \rho (4 - c^2) \left(\frac{c^2 - 2c}{(1 + \alpha)(1 + 3 \alpha)} + \frac{3(4 - c^2)}{4(1 + 2 \alpha)^2} \right) \right\} . \] (2.5)

It can be easily shown that \(F'(\rho) > 0 \) and thus is an increasing function implying \(\max_{\rho \leq 1} F(\rho) = F(1) \). Now, let

\[G(c) = F(1) \]
\[= \frac{1}{12} \left\{ c^2 (4 - c^2) \left(\frac{5}{(1 + \alpha)(1 + 3 \alpha)} - \frac{9}{2(1 + 2 \alpha)^2} \right) + c^4 \left(\frac{27}{4(1 + 2 \alpha)^2} - \frac{6}{(1 + \alpha)(1 + 3 \alpha)} \right) + \frac{2(4 - c^2) \rho c^3 (1 - |x|^2) z}{(1 + \alpha)(1 + 3 \alpha)} + x^2 (4 - c^2) \left(\frac{c^2 - 2c}{(1 + \alpha)(1 + 3 \alpha)} + \frac{3(4 - c^2)}{4(1 + 2 \alpha)^2} \right) \right\} . \] (2.6)

Trivially one can show that \(G(c) \) has maximum attained at \(c = 1 \). The upper bound for \(\left| a_2 a_4 - a_3^2 \right| \) is attained for \(\rho = 1 \) and \(c = 1 \). That is

\[\left| a_2 a_4 - a_3^2 \right| \leq \frac{1}{(1 + \alpha)(1 + 3 \alpha)}. \]

Letting \(c_1 = 1, c_2 = -1 \) and \(c_3 = -2 \) in (2.2), shows that the result is sharp.

Theorem 2.2 Let \(f(z) \in N(\lambda) \). Then
\[\left| a_2a_4 - a_1^2 \right| \leq \frac{1}{8(1 + \lambda)(1 + 3\lambda)}. \] (2.7)

The result obtained is sharp.

Proof: For \(f(z) \in N(\lambda) \) given by (1.1), there exists a \(p \in P \) such that
\[
\left[\hat{\lambda}z^2f^{\prime\prime}(z) + (1 + 2\hat{\lambda})z^2f^{\prime\prime\prime}(z) + zf^{\prime\prime\prime\prime}(z) \right] = \left[\hat{\lambda}z^2f^{\prime\prime}(z) + zf^{\prime\prime\prime}(z) \right]p(z).
\]

Then equating the coefficients, we obtain
\[
a_2 = \frac{c_1}{2(1 + \lambda)}, \quad a_3 = \frac{c_1^2 + c_2}{6(1 + 2\lambda)}, \quad a_4 = \frac{c_1^3 + c_1c_2}{24(1 + 3\lambda)} + \frac{c_1c_2}{8(1 + 3\lambda)} + \frac{c_3}{12(1 + 3\lambda)}.
\]

Thus we have
\[
\left| a_2a_4 - a_1^2 \right| = \frac{1}{144} \left| \frac{6c_1c_3}{(1 + \lambda)(1 + 3\lambda)} + c_1^2c_2 \left(\frac{9}{(1 + \lambda)(1 + 3\lambda)} - \frac{8}{(1 + 2\lambda)^2} \right) - \frac{4c_2^2}{(1 + 2\lambda)^2} - c_1^4 \left(\frac{4}{(1 + 2\lambda)^2} - \frac{3}{(1 + \lambda)(1 + 3\lambda)} \right) \right|.
\] (2.8)

Substituting for \(c_2 \) and \(c_3 \) using Lemma 2.3, we obtain
\[
\left| a_2a_4 - a_1^2 \right| = \frac{1}{144} \left| x^2(4 - c_1^2) \right| \left[\frac{15}{2(1 + \lambda)(1 + 3\lambda)} - \frac{6}{(1 + 2\lambda)^2} \right] - c_1^4 \left(\frac{9}{(1 + 2\lambda)^2} - \frac{9}{(1 + \lambda)(1 + 3\lambda)} \right) + \frac{6(4 - c_1^2)c_1(1 - |x|^2)z}{2(1 + \lambda)(1 + 3\lambda)} - x^2(4 - c_1^2) \left(\frac{3c_1^2}{2(1 + \lambda)(1 + 3\lambda)} + \frac{(4 - c_1^2)}{(1 + 2\lambda)^2} \right) \right|.
\] (2.9)

With \(|c_1| \leq 2 \) from Lemma 1.1, we get \(c_1 = c \) and assume without restriction that \(c \in [0, 2] \).

Thus applying the triangle inequality on (2.9) with \(\rho = |x| \leq 1 \), we obtain
\[
\left| a_2a_4 - a_1^2 \right| \leq \frac{1}{144} \left\{ \rho c^2 (4 - c^2) \left(\frac{15}{2(1 + \lambda)(1 + 3\lambda)} - \frac{6}{(1 + 2\lambda)^2} \right) + c^4 \left(\frac{9}{(1 + 2\lambda)^2} - \frac{9}{(1 + \lambda)(1 + 3\lambda)} \right) + \frac{3(4 - c^2)c}{(1 + \lambda)(1 + 3\lambda)} + \rho^2 (4 - c^2) \left(\frac{3c^2 - 6c}{2(1 + \lambda)(1 + 3\lambda)} + \frac{(4 - c^2)}{(1 + 2\lambda)^2} \right) \right\}.
\]
Furthermore,

\[F'(\rho) = \frac{1}{144} \left\{ c^2 (4-c^2)^2 \left(\frac{15}{2(1+\lambda)(1+3\lambda)} - \frac{6}{(1+2\lambda)^2} \right) + 2\rho \left(\frac{3c^2 - 6c}{2(1+\lambda)(1+3\lambda)} + \frac{(4-c^2)}{(1+2\lambda)^2} \right) \right\} \quad (2.11) \]

It can be easily shown that \(F'(\rho) > 0 \) and thus is an increasing function implying \(\max_{\rho \leq 1} F(\rho) = F(1) \). Now, let

\[G(c) = F(1) = \frac{1}{144} \left\{ c^2 (4-c^2)^2 \left(\frac{15}{2(1+\lambda)(1+3\lambda)} - \frac{6}{(1+2\lambda)^2} \right) + c^4 \left(\frac{9}{(1+2\lambda)^2} - \frac{9}{(1+\lambda)(1+3\lambda)} \right) \right\} \]

+ \(\frac{3(4-c^2)c}{(1+\lambda)(1+3\lambda)} + (4-c^2) \left\{ \frac{3c^2 - 6c}{2(1+\lambda)(1+3\lambda)} + \frac{(4-c^2)}{(1+2\lambda)^2} \right\} \cdot \)

Trivially one can show that \(G(c) \) has maximum attained at \(c = 1 \). The upper bound for \(|a_2a_4 - a_3^2| \) is attained for \(\rho = 1 \) and \(c = 1 \). That is,

\[|a_2a_4 - a_3^2| \leq \frac{1}{8(1+\lambda)(1+3\lambda)}. \]

Letting \(c_1 = 1, c_2 = -1 \) and \(c_3 = -2 \) in (2.8), shows that the result is sharp.

Remark 2.1: For \(\alpha = 0 \) and \(\alpha = 1 \) in Theorem 2.1 and \(\lambda = 0 \) in Theorem 2.2, we get the results of Aini Janteng et al. [1].

3. Application to Functions Defined by Fractional Derivatives

Let \(g(z) = z + \sum_{n=2}^{\infty} g_n z^n \), \((g_n > 0) \). Since

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in M_g(\alpha) \quad \text{if and only if} \quad (f^* g) = z + \sum_{n=2}^{\infty} g_n a_n z^n \in M(\alpha) \]

and \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in N_g(\lambda) \quad \text{if and only if} \quad (f^* g) = z + \sum_{n=2}^{\infty} g_n a_n z^n \in N(\lambda), \)

we obtain coefficient bounds for functions in the classes \(M_g(\alpha) \) and \(N_g(\lambda) \) from the corresponding coefficient bounds for the functions \(M(\alpha) \) and \(N(\lambda) \). Applying Theorems 2.1 and Theorem 2.2 for the functions \((f^* g)(z) = z + \sum_{n=2}^{\infty} g_n a_n z^n \), we get the following Theorem 3.1 and Theorem 3.2.
Theorem 3.1: If \(f(z) \) given by (1.1) belongs to \(M_\alpha \), then

\[
|a_2a_4 - a_3^2| \leq \frac{1}{g_2g_4(1 + \alpha)(1 + 3\alpha)}.
\] (3.1)

The result is sharp.

Proof: The proof of this theorem is much similar to the proof of Theorem 2.1 and hence we omit the details.

Theorem 3.2: If \(f(z) \) given by (1.1) belongs to \(N_\lambda \), then

\[
|a_2a_4 - a_3^2| \leq \frac{1}{8g_2g_4(1 + \lambda)(1 + 3\lambda)}.
\] (3.2)

The result is sharp.

Proof: The proof of this theorem is much similar to the proof of Theorem 2.2 and hence we omit the details.

Since \((\Omega f)(z) = z + \sum_{n=2}^\infty \frac{\Gamma(n+1)\Gamma(2-\gamma)}{\Gamma(n+1-\gamma)}a_n z^n \), we have

\[
g_2 = \frac{\Gamma(3)\Gamma(2-\gamma)}{\Gamma(3-\gamma)} = \frac{2}{2 - \gamma},
\] (3.3)

\[
g_3 = \frac{\Gamma(4)\Gamma(2-\gamma)}{\Gamma(4-\gamma)} = \frac{6}{(2 - \gamma)(3 - \gamma)},
\] (3.4)

and

\[
g_4 = \frac{\Gamma(5)\Gamma(2-\gamma)}{\Gamma(6-\gamma)} = \frac{24}{(6 - \gamma)(5 - \gamma)(4 - \gamma)(3 - \gamma)}.\] (3.5)

For \(g_2 \) and \(g_4 \) given by (3.3) and (3.5), Theorems 3.1 and 3.2 reduces to the following:

Theorem 3.3:

If \(f(z) \) given by (1.1) belongs to \(M_\alpha \), then

\[
|a_2a_4 - a_3^2| \leq \frac{(2 - \gamma)(3 - \gamma)(4 - \gamma)(5 - \gamma)(6 - \gamma)}{48(1 + \alpha)(1 + 3\alpha)}.
\] (3.6)

The result is sharp.

Theorem 3.4:
If \(f(z) \) given by (1.1) belongs to \(N_{g}(\lambda) \), then

\[
\left| a_{n}a_{q} - a_{s}^{2} \right| \leq \frac{(2-\gamma)(3-\gamma)(4-\gamma)(5-\gamma)(6-\gamma)}{384(1+\alpha)(1+3\alpha)}.
\]

(3.7)

The result is sharp.

REFERENCES

