HOMOTOPY PROPERTIES OF DIGITAL SIMPLE CLOSED CURVES

Annie Kurien K*, M. S. Samuel**

*Department of Mathematics, Mar Thoma College for Women, Perumbavoor.
**Department of Computer Applications, MACFAST, Tiruvalla.

Abstract:

In this paper we discuss some properties of digital simple closed curves and prove that a digital simple closed curve of more than four points is not contractible.

Keywords:
Digital image, Digital topology, Digital simple closed curve

1 Introduction

A digital image is a set X of lattice points that model a continuous object Y, where Y is a subset of a Euclidean space. Digital topology is concerned with developing a mathematical theory of such discrete objects so that digital images have topological properties that mirror those of the Euclidean objects they model; Applications of digital topology have been found shape description and in image processing operations such as thinning and skeletonization.

2 Preliminaries

Let Z be the set of integers. Z^d is the set of lattice points in d-dimensional Euclidean space. Let $X \subset Z^d$ and let k be some adjacency relation for the members of X. Then the pair (X, k) is said to be binary digital image. For a positive integer l with $1 \leq l \leq n$ and two distinct points $p = (p_1, p_2, ..., p_d)$, $q = (q_1, q_2, ..., q_d) \in Z^d$, p and q are c_i adjacent if
there are atmost \(l \) indices \(i \) such that \(\|p_i - q_i\| = 1 \) and
for all other indices \(j \) such that \(\|p_j - q_j\| \neq 1 \), \(p_j = q_j \). \(C_i \) denotes the number of points \(q \in \mathbb{Z}^d \) that are \(C_i \)-adjacent to a given point \(p \in \mathbb{Z}^d \). Thus in \(\mathbb{Z} \) we have \(c_1 = 2 \), in \(\mathbb{Z}^2 \) we have \(c_1 = 4 \) and \(c_2 = 8 \) and so on.

2.1 Proposition (2)

Let \(X \subset \mathbb{Z}^{d_0} \) and \(Y \subset \mathbb{Z}^{d_1} \) be digital images with \(k_0 \) adjacency and \(k_1 \) adjacency respectively. Then the function \(f: X \to Y \) is \((k_0, k_1) \) continuous if and only if for every \(k_0 \) adjacent points \(\{ x_0, x_1 \} \) of \(X \) either \(f(x_0) = f(x_1) \) or \(f(x_0) \) and \(f(x_1) \) are \(k_1 \) adjacent in \(Y \).

2.2 Definition [2]

Let \(X \subset \mathbb{Z}^{d_0} \) and \(Y \subset \mathbb{Z}^{d_1} \) be digital images with \(k_0 \) adjacency and \(k_1 \)-adjacency respectively. Two \((k_0, k_1) \) continuous functions \(f, g: X \to Y \) are said to be digitally \((k_0, k_1) \) homotopic in \(Y \) if there is a positive integer \(m \) and a function \(H: X \times [0, m] \to Y \) such that
- for all \(x \in X \), \(H(x, 0) = f(x) \) and \(H(x, m) = g(x) \)
- for all \(x \in X \) the induced function \(H_x: [0, m] \to Y \) defined by \(H_x(t) = H(x, t) \) for all \(t \in [0, m] \) is \((2, k_1) \) continuous and
- for all \(t \in [0, m] \), the induced function \(H_t: X \to Y \) defined by \(H_t(x) = H(x, t) \) for all \(x \in X \) is \((k_0, k_1) \) continuous.

2.3 Definition (4)

A digital simple closed \(k \)-curve \(X \) is required to satisfy the following. \((X, k) \) is a digital image and the following property (SCC) is satisfied for some positive integer \(m \).

(SCC) There is a \((2, k) \) continuous function \(f: [0, m-1] \to X \) such that
- \(f \) is one-to-one and onto and
• for all $t \in [0, m-1] \mathbb{Z}$, the set of k-neighbors of $f(t)$ in $f [0, m-1] \mathbb{Z}$ is $\{ f((t-1) \mod m), f((t+1) \mod m) \}$.

2.4 Definition(4)

If $S = \{ x_i \}_{0}^{m-1}$ where $x_i = f(i)$ for all $i \in [0, m-1] \mathbb{Z}$, then the points of S are circularly ordered.

3 Homotopy properties of digital simple closed curves

Proposition (3.1)

Let S_{a} be a digital simple closed K_{a}-curve, $a \in \{0, 1\}$ Let $f : S_{0} \to S_{1}$ be a (k_{0}, k_{1}) continuous function. If $|S_{0}| = |S_{1}|$, then the following are equivalent.

- (a) f is one to one
- (b) f is onto
- (c) f is a (k_{0}, k_{1}) isomorphism

Proof:

Since S_{0} is a finite set (a) \implies (b)

(c) follows from (a) & (b) [definition of isomorphism]

(b) \implies (c)

Let $S_{a} = \{ x_{a, i} \}_{0}^{n-1}$ where the points S_{a} are circularly ordered, $a \in \{0, 1\}$. Let $x_{1, u} \in S_{1}$ and let $x_{0, v} = f^{-1}(x_{1, u})$. Then the k_{1} neighbors of $x_{1, u}$ in S_{1} are $x_{1, (u-1) \mod n}$ and $x_{1, (u+1) \mod n}$. The k_{0} neighbors of $x_{0, v}$ in S_{0} are $x_{0, (v-1) \mod n}$ and $x_{0, (v+1) \mod n}$. Since f is a continuous bijection, choice of $x_{0, v}$ implies

$$f(\{ x_{0, (v-1) \mod n}, x_{0, (v+1) \mod n} \}) = \{ x_{1, (u-1) \mod n}, x_{1, (u+1) \mod n} \}.$$

Thus, $f^{-1}(\{ x_{1, (u-1) \mod n}, x_{1, (u+1) \mod n} \}) = \{ x_{0, (v-1) \mod n}, x_{0, (v+1) \mod n} \}$.

Since u is arbitrary f^{-1} is (k_{1}, k_{0}) continuous, so f is a (k_{0}, k_{1}) isomorphism.

Theorem 3.2.

Let S be a simple closed k curve and let $H : S \times [0, m] \mathbb{Z} \to S$ be a (k, k) homotopy between an isomorphism H_{0} and $H_{m} = f$, where $f(S) \neq S$, then $|S| = 4$.
Proof

Let $S = \{x_i\}_{i=0}^{n-1}$ where the points of S are circularly ordered. There exists $\omega \in [1, m] \mathbb{Z}$ such that $\omega = \min\{t \in [0, m] \mathbb{Z} \mid H_t(S) \neq S\}$.

Without loss of generality, $x_1 \notin H_\omega(S)$. Then the induced function $H_{\omega-1}$ is a bijection, so there exists $x_u \in S$ such that $H(x_u, \omega-1) = x_1$. By proposition 3.1, $H_{\omega-1}(\{x_{(u-1) \mod n}, x_{(u+1) \mod n}\}) = \{x_0, x_2\}$ and the continuity property of Homotopy implies $H(x_u, \omega) \in \{x_0, x_2\}$. Without loss of generality, $H(x_{(u-1) \mod n}, \omega) = x_0 \quad \ldots \quad (1)$ and $H(x_u, \omega) = x_2 \quad \ldots \quad (2)$

Suppose $n > 4$. Equ. (2) implies $H(x_{(u-1) \mod n}, \omega) \in \{x_1, x_2, x_3\}$ but this is impossible since

1. $H(x_{(u-1) \mod n}, \omega) \notin x_1$
2. $H(x_{(u-1) \mod n}, \omega) \notin \{x_2, x_3\}$ from equ (1) because $n > 4$ implies neither x_2 nor x_3 is k-adjacent to x_0.

The contradiction arose from the assumption that $n > 4$. Therefore we must have $n \leq 4$. Since a digital simple closed curve is assumed to have at least 4 points, we must have $n = 4$

4 Conclusion:

We have shown that digital simple closed curves of more than 4 points are not contractible.

5 References