ON L-FUZZY ω-BASICALLY DISCONNECTED SPACES

M. Sudha1 & Bijan Davvaz2

1Department of Mathematics, Sri Sarada College For Women, Salem, Tamilnadu, India.
2Department of Mathematics, Yazd University, Iran

Email: sudhaslm05@yahoo.com

Abstract

In this paper L-fuzzy ω-closed and L-fuzzy ω-open sets are introduced. Also a new class of L-fuzzy topological space called L-fuzzy ω-basically disconnected space is introduced. Several characterizations and some interesting properties are also given.

Keywords L-fuzzy ω-closed, L-fuzzy ω-open set, L-fuzzy ω-basically disconnected space, L-fuzzy ω^*-continuous map, L-fuzzy ω^*-irresolute, strong F_ω L-fuzzy ω^*-continuous map, lower (upper) L-fuzzy ω^*-continuous map.

2000 Mathematics Subject Classification 54A40,03E72.

1. Introduction

The fuzzy concept has invaded almost all branches of Mathematics since the introduction of the concept by Zadeh[14]. Fuzzy sets have applications in many fields such as information [11] and control [12]. The theory of fuzzy topological spaces was introduced and developed by Chang [3] and since then various important notions in classical topology have been extended to fuzzy topological spaces. Rodabaugh [7] discussed normality and the L-fuzzy unit interval. He [8] also studied fuzzy addition in the L-fuzzy real line. Hoeche [6] studied the characterizations of L-topologies by L-valued neighbourhoods. An L-fuzzy normal spaces and Tietze extension theorem were discussed by Tomash Kubiak [14]. The concept of ω-open set was studied in [9]. The purpose of this paper is to introduce L-fuzzy ω-closed, L-fuzzy ω-open sets and a new class of L-fuzzy topological spaces called L-fuzzy ω-basically disconnected space. In this connection several characterizations and some interesting properties are also given.

2. Preliminaries

Definition [1] Let (X, T) be a fuzzy topological space and λ be a fuzzy set in (X, T), λ is called a fuzzy G_δ-set if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where each $\lambda_i \in T$, $i \in I$.

Definition [1] Let (X, T) be a fuzzy topological space and λ be a fuzzy set in (X, T), λ is called a fuzzy F_σ-set if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$ where each $1 - \lambda_i \in T$, $i \in I$.

Definition [2] Throughout this paper (L, \leq, \cdot) stands for an infinitely distributive lattice with an order reversing involution. Such a lattice being complete has a least element 0 and a greatest element 1. Let X be a non-empty set. An L-fuzzy set in X is an element of the set L^X of all functions from X to L.

Definition [4] The L-fuzzy real line $R(L)$ is the set of all monotone decreasing elements $\lambda \in L^R$ satisfying $\bigvee \{ \lambda(t) \mid t \in R \} = 1$ and $\bigwedge \{ \lambda(t) \mid t \in R \} = 0$, after the identification of $\lambda, \mu \in L^R$ if $\lambda(t) = \mu(t)$ for all $t \in R$ where $\lambda(t) = \bigwedge \{ \lambda(s) \mid s < t \}$ and $\lambda(t) = \bigvee \{ \lambda(s) \mid s > t \}$. The natural L-fuzzy topology on $R(L)$ is generated from the subbases $\{ L_t, R_t \mid t \in R \}$, where $L(\lambda) \equiv \lambda(t^-)$ and $R(\lambda) \equiv \lambda(t^+)$.

The L-fuzzy unit interval $I(L) [5]$ is a subset of $R(L)$ such that $[\lambda \quad \in I(L) \text{ if }\lambda(t) = 1 \text{ for } t < 0 \text{ and } \lambda(t) = 0 \text{ for } t > 1$. It is equipped with the subspace L-fuzzy topology.
M. Sudha & **Bijan Davvaz**

Definition 14 If \(A \in L^X \) is crisp, then \((A,T_A)\) is an L-fuzzy topological space called a crisp subspace of \((X,T)\), where \(T_A=\{U/A \mid U \in T\}\) is called the subspace L-fuzzy topology.

Definition 9 A subset of a topological space \((X,T)\) is called \(\omega\)-closed in \((X,T)\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is semi-open in \((X,T)\). A subset \(A\) is called \(\omega\)-open in \((X,T)\) if its complement, \(A^C\) is \(\omega\)-closed.

Definition 13
Let \((X,T)\) be any fuzzy topological space. \((X,T)\) is called fuzzy basically disconnected if the closure of every fuzzy open \(F\) set is fuzzy open.

Definition 10 An L-fuzzy set \(\lambda\) of an L-fuzzy topological space \((X,T)\) is called L-fuzzy \(\omega\)-closed in \((X,T)\) if \(\text{L-cl}(\lambda) \leq \mu\) whenever \(\lambda \leq \mu\) and \(\mu\) is L-fuzzy semi-open in \((X,T)\). The complement of L-fuzzy \(\omega\)-closed set is L-fuzzy \(\omega\)-open.

Definition 10 Let \((X,T)\) be an L-fuzzy topological space. For any L-fuzzy set \(\lambda\) in \((X,T)\), L-fuzzy \(\omega\)-closure of \(\lambda\) (briefly, L-cl(\(\lambda\))) is defined as
\[
\text{L-\text{cl}}(\lambda) = \bigwedge \{ \mu : \mu \geq \lambda \text{ and } \mu \text{ is L-fuzzy } \omega\text{-closed} \}.
\]

3. Characterizations and properties of L-fuzzy \(\omega\)-basically disconnected spaces.

In this section a new class of set called L-fuzzy \(\omega\)-closed set and thereby a new class of space called L-fuzzy \(\omega\)-basically disconnected space is introduced. Some interesting properties and characterizations are also discussed.

Definition 3.1 Let \((X,T)\) be any L-fuzzy topological space and \(\lambda\) be any L-fuzzy set in \((X,T)\). \(\lambda\) is called
\[
\text{(a)} \quad \text{an L-fuzzy } G_\omega \text{ set if } \lambda = \bigwedge_{i=1}^\infty \lambda_i \text{ where each } \lambda_i \text{ is L-fuzzy open.}
\]
\[
\text{(b)} \quad \text{an L-fuzzy } F_\omega \text{ set if } \lambda = \bigvee_{i=1}^\infty \lambda_i \text{ where each } (1-\lambda_i) \text{ is L-fuzzy open.}
\]

Definition 3.2 Let \(\lambda\) be any L-fuzzy set in the L-fuzzy topological space \((X,T)\). Then we define
\[
\text{L-int}(\lambda) = \{ \mu : \mu \leq \lambda \text{ and } \mu \text{ is L-fuzzy open} \} \quad \text{and} \quad \text{L-cl}(\lambda) = \{ \mu : \mu \geq \lambda \text{ and } \mu \text{ is L-fuzzy closed} \}.
\]

Definition 3.3 Let \(\lambda\) be any L-fuzzy set in the L-fuzzy topological space \((X,T)\). \(\lambda\) is called L-fuzzy semi-open if \(\lambda \subseteq \text{L-cl}(\text{L-int}(\lambda))\).

Definition 3.4 An L-fuzzy set \(\lambda\) of an L-fuzzy topological space \((X,T)\) is called L-fuzzy \(\omega\)-closed in \((X,T)\) if \(L-\text{ox cl}(\lambda) \leq \mu\) whenever \(\lambda \leq \mu\) and \(\mu\) is L-fuzzy semi-open in \((X,T)\). The complement of L-fuzzy \(\omega\)-closed set is L-fuzzy \(\omega\)-open.

Note 3.1
\(**a\)** Let \((X,T)\) be an L-fuzzy topological space. An L-fuzzy set \(\lambda\) in \((X,T)\) which is both L-fuzzy \(\omega\)-open and L-fuzzy \(F_\omega\) is denoted by L-fuzzy \(\omega\)-open \(F_\omega\).

\(**b\)** Let \((X,T)\) be an L-fuzzy topological space. An L-fuzzy set \(\lambda\) in \((X,T)\) which is both L-fuzzy \(\omega\)-closed and L-fuzzy \(G_\omega\) is denoted by L-fuzzy \(\omega\)-closed \(G_\omega\).

Notation 3.1 An L-fuzzy set \(\lambda\) which is both L-fuzzy \(\omega\)-open \(F_\omega\) and L-fuzzy \(\omega\)-closed \(G_\omega\) is denoted by L-fuzzy \(\omega\)-COGF.

Definition 3.5 Let \((X,T)\) be an L-fuzzy topological space. For any L-fuzzy set \(\lambda\) in \((X,T)\), L-fuzzy \(\omega^*-\) closure of \(\lambda\) (briefly, \(L\omega^*-\text{cl}(\lambda)\)) is defined as
\[
L\omega^*-\text{cl}(\lambda) = \bigwedge \{ \mu : \mu \geq \lambda \text{ and } \mu \text{ is L-fuzzy } \omega^*\text{-closed} \}.
\]

Definition 3.6 Let \((X,T)\) be an L-fuzzy topological space. For any L-fuzzy set \(\lambda\) in \((X,T)\), L-fuzzy \(\omega^*-\) interior of \(\lambda\) (briefly, \(L\omega^*-\text{int}(\lambda)\)) is defined as \(L\omega^*-\text{int}(\lambda) = \bigvee \{ \mu : \mu \leq \lambda \text{ and } \mu \text{ is L-fuzzy } \omega^*\text{-open} \} \).
ON L-FUZZY $\tilde{\omega}$-BASICALLY DISCONNECTED SPACES

Remark 3.1 Let (X, T) be an L-fuzzy topological space. For any L-fuzzy set λ in (X, T)

a) $1 - L\tilde{\omega}^\ast$-int $(\lambda) = L\tilde{\omega}^\ast$-cl $(1 - \lambda)$.

b) $1 - L\tilde{\omega}^\ast$-cl $(\lambda) = L\tilde{\omega}^\ast$-int $(1 - \lambda)$.

Definition 3.7 Let (X, T) and (Y, S) be any two L-fuzzy topological spaces. A mapping $f : (X, T) \to (Y, S)$ is called L-fuzzy $\tilde{\omega}^\ast$-continuous if $f^{-1}(\lambda)$ is L-fuzzy $\tilde{\omega}$-closed G_δ in (X, T) for every L-fuzzy closed and L-fuzzy G_δ set λ in (Y, S).

Definition 3.8 Let (X, T) and (Y, S) be any two L-fuzzy topological spaces. A mapping $f : (X, T) \to (Y, S)$ is called L-fuzzy $\tilde{\omega}^\ast$-irresolute if the inverse image of every L-fuzzy $\tilde{\omega}$-open F_σ set in (Y, S) is L-fuzzy $\tilde{\omega}$-open F_σ in (X, T).

Definition 3.9 Let (X, T) and (Y, S) be any two L-fuzzy topological spaces. A mapping $f : (X, T) \to (Y, S)$ is said to be L-fuzzy $\tilde{\omega}^\ast$-open if the image of every L-fuzzy $\tilde{\omega}$-open F_σ set in (X, T) is L-fuzzy $\tilde{\omega}$-open F_σ in (Y, S).

Proposition 3.11 Let (X, T) and (Y, S) be any two L-fuzzy topological spaces. Then $f : (X, T) \to (Y, S)$ is L-fuzzy $\tilde{\omega}^\ast$-irresolute iff $f (L\tilde{\omega}^\ast$-$cl (\lambda)) \subseteq L\tilde{\omega}^\ast$-$cl (f (\lambda))$, for every L-fuzzy set λ in (Y, S).

Proposition 3.2 Let (X, T) and (Y, S) be any two L-fuzzy topological spaces and let $f : (X, T) \to (Y, S)$ be an L-fuzzy $\tilde{\omega}^\ast$-open surjective function. Then $f^{-1}(L\tilde{\omega}^\ast$-$cl (\lambda)) \subseteq L\tilde{\omega}^\ast$-$cl (f^{-1}(\lambda))$, for each L-fuzzy set λ in (Y, S).

Definition 3.10 Let (X, T) be any L-fuzzy topological space. (X, T) is called L-fuzzy $\tilde{\omega}$-basically disconnected if the L-fuzzy $\tilde{\omega}$-closure of every L-fuzzy $\tilde{\omega}$-open F_σ set is L-fuzzy $\tilde{\omega}$-open F_σ.

Proposition 3.3 For an L-fuzzy topological space (X, T) the following statements are equivalent:

(a) (X, T) is an L-fuzzy $\tilde{\omega}$-basically disconnected space.

(b) For each L-fuzzy $\tilde{\omega}$-closed G_δ set λ, $L\tilde{\omega}^\ast$-$int (\lambda)$ is L-fuzzy $\tilde{\omega}$-closed G_δ.

(c) For each L-fuzzy $\tilde{\omega}$-open F_σ set λ, $L\tilde{\omega}^\ast$-$cl (\lambda) + L\tilde{\omega}^\ast$-$cl (1 - L\tilde{\omega}^\ast$-$cl (\lambda)) = 1$.

(d) For every pair of L-fuzzy $\tilde{\omega}$-open F_σ sets λ and μ such that $L\tilde{\omega}^\ast$-$cl (\lambda) + \mu = 1$, we have $L\tilde{\omega}^\ast$-$cl (\lambda) + L\tilde{\omega}^\ast$-$cl (\mu) = 1$.

Proposition 3.4 Let (X, T) be any L-fuzzy ω-basically disconnected space and (Y, S) be any L-fuzzy topological space. Let $f : (X, T) \to (Y, S)$ be L-fuzzy $\tilde{\omega}$-irresolute, L-fuzzy $\tilde{\omega}$-open and surjective function. Then (Y, S) is L-fuzzy $\tilde{\omega}$-basically disconnected.

Definition 3.11 Let $\{ (X_\alpha, T_\alpha) / \alpha \in \Delta \}$ be a family of disjoint L-fuzzy topological spaces. Let $X = \bigcup_{\alpha \in \Delta} X_\alpha$.

Define $T = \{ \lambda \in L^X / \lambda / X_\alpha$ is L-fuzzy $\tilde{\omega}$-open F_σ in $(X_\alpha, T_\alpha) \}$. Then (X, T) is an L-fuzzy topological space called the L-fuzzy topological sum of $\{ (X_\alpha, T_\alpha) / \alpha \in \Delta \}$.

Proposition 3.5 Let $\{ (X_\alpha, T_\alpha) / \alpha \in \Delta \}$ be a family of disjoint L-fuzzy $\tilde{\omega}$-basically disconnected spaces and let (X, T) be their L-fuzzy topological sum. Then (X, T) is L-fuzzy $\tilde{\omega}$-basically disconnected.

Definition 3.12 Let (X, T) be an L-fuzzy topological space. A mapping $f : X \to R(L)$ is called lower (resp. upper) L-fuzzy $\tilde{\omega}$-continuous if $f^{-1} (R_t)$ (resp. $f^{-1} (L_t)$) is L-fuzzy $\tilde{\omega}$-open F_σ (resp. L-fuzzy $\tilde{\omega}$-closed G_δ) for each $t \in R$.

Proposition 3.6 Let (X, T) be an L-fuzzy topological space. Then (X, T) is L-fuzzy $\tilde{\omega}$-basically disconnected iff for all L-fuzzy $\tilde{\omega}$-open F_σ set λ and an L-fuzzy $\tilde{\omega}$-closed G_δ set μ such that $\lambda \leq \mu$, $L\tilde{\omega}^\ast$-$cl (\lambda) \leq L\tilde{\omega}^\ast$-$int (\mu)$.

Remark 3.2 Let (X, T) be an L-fuzzy $\tilde{\omega}$-basically disconnected space. Let $\{ \lambda_i, 1 - \mu_i / i \in N \}$ be a collection such that λ_i's are L-fuzzy $\tilde{\omega}$-open F_σ and μ_i's are L-fuzzy $\tilde{\omega}$-closed G_δ and let
\(\lambda, \mu \) are L-fuzzy \(\tilde{o} \)-coGF. If \(\lambda_i \leq \lambda \leq \mu_i \) and \(\lambda_i \leq \mu \leq \mu_i \) for all \(i, j \in \mathbb{N} \), then there exists an L-fuzzy \(\tilde{o} \)-coGF set \(\gamma \) such that \(\tilde{L}\tilde{o}^*\-cl (\lambda_i) \leq \gamma \leq \tilde{L}\tilde{o}^*\-int (\mu_i) \), for all \(i, j \in \mathbb{N} \).

Proposition 3.7 Let \((X, T)\) be an L-fuzzy \(\omega \)-basically disconnected space. Let \(\{ \lambda_i \}_{i \in \mathbb{N}} \) and \(\{ \mu_i \}_{i \in \mathbb{N}} \) be monotone increasing collections of L-fuzzy \(\tilde{o} \)-open \(F_0 \) sets and L-fuzzy \(\tilde{o} \)-closed \(G_0 \) sets of \((X, T)\) and suppose that \(\lambda_i \leq \mu_i \) whenever \(\lambda_i < \mu_i \) (Q is the set of all rational numbers). Then there exists a monotone increasing collection \(\{ \gamma \}_{i \in \mathbb{N}} \) of L-fuzzy \(\tilde{o} \)-coGF sets of \((X, T)\) such that \(\tilde{L}\tilde{o}^*\-cl (\lambda_i) \leq (\gamma_i) \) and \(\gamma_i \leq \tilde{L}\tilde{o}^*\-int (\mu_i) \) whenever \(\lambda_i < \mu_i \).

Proposition 3.8 Let \((X, T)\) be any L-fuzzy topological space; let \(\lambda \in L^X \) and let \(f : X \to R(L) \) be such that

\[
 f(x)(t) = \begin{cases}
 1 & \text{if } t < 0 \\
 \chi(0) & \text{if } 0 \leq t \leq 1 \\
 0 & \text{if } t > 0
\end{cases}
\]

for all \(x \in X \). Then \(f \) is lower (resp. upper) L-fuzzy \(\tilde{o}^* \)-continuous iff \(\lambda \) is L-fuzzy \(\tilde{o} \)-open \(F_0 \) (resp. L-fuzzy \(\tilde{o} \)-open \(F_0 \)) / L-fuzzy \(\tilde{o} \)-closed \(G_0 \).

Definition 3.13 The characteristic function of \(\lambda \in L^X \) is the map \(\chi : X \to I(L) \) defined by \(\chi(\lambda)(x) = (\lambda(x)) \), \(x \in X \).

Proposition 3.9 Let \((X, T)\) be an L-fuzzy topological space and \(\lambda \in L^X \). Then \(\chi \) is lower (resp.upper) L-fuzzy \(\tilde{o}^* \)-continuous iff \(\lambda \) is L-fuzzy \(\tilde{o} \)-open \(F_0 \) (resp. L-fuzzy \(\tilde{o} \)-open \(F_0 \)) / L-fuzzy \(\tilde{o} \)-closed \(G_0 \).

Definition 3.14 Let \((X, T)\) and \((Y, S)\) be any two L-fuzzy topological spaces. A mapping \(f : (X, T) \to (Y, S) \) is called strong \(F_0 \) L-fuzzy \(\tilde{o}^* \)-continuous if \(f^{-1}(\lambda) \) is L-fuzzy \(\tilde{o} \)-coGF set of \((X, T)\), for every L-fuzzy \(\tilde{o} \)-open \(F_0 \) set \(\lambda \) of \((Y, S)\).

Proposition 3.10 Let \((X, T)\) be an L-fuzzy topological space. Then the following statements are equivalent:

(a) \((X, T)\) is an L-fuzzy \(\tilde{o} \)-basically disconnected space.

(b) If \(g, h : X \to R(L) \) where \(g \) is lower L-fuzzy \(\tilde{o}^* \)-continuous, \(h \) is upper L-fuzzy \(\tilde{o}^* \)-continuous, then there exists \(f \in C_{F_0} \tilde{L}\tilde{o} \) such that \(g \leq f \leq h \). [\(C_{F_0} \tilde{L}\tilde{o} \) = collection of all strong \(F_0 \) L-fuzzy \(\tilde{o}^* \)-continuous function on \(X \) with values in \(R(L) \)].

(c) If \(\lambda \) is L-fuzzy \(\tilde{o} \)-closed \(G_0 \) and \(\mu \) is L-fuzzy \(\tilde{o} \)-open \(F_0 \) sets such that \(\mu \leq \lambda \), then there exists a strong \(F_0 \) L-fuzzy \(\tilde{o}^* \)-continuous function \(f : X \to I(L) \) such that \(\mu \leq (1-L\lambda)f \leq R_0f \leq \lambda \).

Proposition 3.11 Let \((X, T)\) be an L-fuzzy \(\tilde{o} \)-basically disconnected space and let \(A \subset X \) be such that \(\chi_A \) is L-fuzzy \(\tilde{o}^* \)-open. Let \(f : (A, T/A) \to (I(L) \) be strong \(F_0 \) L-fuzzy \(\tilde{o}^* \)-continuous. Then \(f \) has a strong \(F_0 \) L-fuzzy \(\tilde{o}^* \)-continuous extension over \((X, T)\).

Acknowledgement

The authors express their sincere thanks to the referee for his valuable comments regarding the improvement of the paper.

REFERENCES

6. Hoche. V. Characterization of L-topologies by L-valued neighbourhoods, in [5], 389-432.
ON L-FUZZY ω-BASICALLY DISCONNECTED SPACES