ON SOMEWHAT PAIRWISE FUZZY FAINTLY \(\omega \)-CONTINUOUS FUNCTIONS

M. Sudha
E.Roja and M.K.Uma
Department of Mathematics
Sri Sarada College for Women, Salem-16
TamilNadu, India.

Abstract
In this paper the concept of somewhat pairwise fuzzy faintly \(\omega \)-continuous functions and somewhat pairwise fuzzy faintly \(\omega \)-open functions are introduced. Some interesting properties of these functions are investigated besides giving some characterizations of these functions.

Keywords
Fuzzy \(\omega \)-open set, fuzzy \(\omega \)-continuous function, somewhat pairwise fuzzy faintly \(\omega \)-continuous function, somewhat pairwise fuzzy faintly \(\omega \)-open function, pairwise fuzzy \(\theta \) -dense set, pairwise fuzzy \(\theta^* \) -dense set.

1. Introduction
The fuzzy concept has invaded almost all branches of Mathematics ever since the introduction of fuzzy sets by Zadeh [10]. Fuzzy sets have applications in many fields such as information [7] and control [8]. The theory of fuzzy topological spaces was introduced and developed by Chang [3] and since then various notions in classical topology have been extended to fuzzy topological spaces. The concept of somewhat continuous functions was introduced by Karl. R.Gentry and Hughes.B.Hoyle III in [5]. In 1989 Kandil [4] introduced the concept of fuzzy bitopological spaces. Uma, Roja and Balasubramanian introduced the concept of somewhat pairwise fuzzy continuous functions [9]. Anjan Mukherjee introduced the concept of fuzzy faintly continuous functions in [1]. The concept of \(\omega \)-continuous mappings was introduced and studied by Sheik John in [6]. In this paper we introduce a new class of fuzzy set called fuzzy \(\omega \)-open set and a new form of fuzzy \(\theta \)-open set labelled as fuzzy \(\theta^* \)-open set. Also we study some of its properties and characterizations with suitable examples.

2. Preliminaries
We recall the following definitions which we used in this paper.

Definition 2.1 [9]
Let \((X, T_1, T_2)\) and \((Y, S_1, S_2)\) be any two bitopological spaces. A function \(f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2)\) is called pairwise* fuzzy continuous if for each \(S_i\)-fuzzy open set or \(S_j\)-fuzzy open set \(\lambda \) in \((Y, S_1, S_2)\), the inverse image \(f^{-1}(\lambda)\) is a \(T_i\)-fuzzy open or \(T_j\)-fuzzy open set in \((X, T_1, T_2)\).

Definition 2.2 [9]
Let \((X, T_1, T_2)\) and \((Y, S_1, S_2)\) be any two bitopological spaces. A function \(f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2)\) is called somewhat pairwise fuzzy continuous if for each \(S_i\)-fuzzy open set or \(S_j\)-fuzzy open set \(\lambda \) in \((Y, S_1, S_2)\), the inverse image \(f^{-1}(\lambda)\) is a \(T_i\)-fuzzy open or \(T_j\)-fuzzy open set in \((X, T_1, T_2)\).

Definition 2.3 [6]
Let \((X, T_1, T_2)\) and \((Y, S_1, S_2)\) be any two bitopological spaces. A function \(f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2)\) is called somewhat pairwise fuzzy continuous if \(\lambda \in S_1 \) or \(\lambda \in S_2 \) and \(f^{-1}(\lambda) \neq 0 \Rightarrow \) there exists \(\mu \in T_1 \) or \(\mu \in T_2 \) such that \(\mu \neq 0 \) and \(\mu \leq f^{-1}(\lambda)\).

Definition 2.4 [1]
Let \(f : (X, T) \rightarrow (Y, S)\) be a function from the fuzzy topological space \((X, T)\) to the fuzzy topological space \((Y, S)\). \(f\) is called fuzzy faintly continuous if \(f^{-1}(\lambda)\) is fuzzy open for every fuzzy \(\theta\)-open set \(\lambda \) in \(Y\).
A subset A of a topological space (X, T) is called ω-closed in (X, T) if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, T).

A subset A is called ω-open in (X, T) if its complement, A^c, is ω-closed.

Definition 2.5 [2]
Let (X, T) and (Y, S) be any two fuzzy topological spaces. For a mapping $f : (X, T) \rightarrow (Y, S)$, the graph $g : X \times Y \rightarrow X \times Y$ of f is defined as $g(x) = (x, f(x))$, for each $x \in X$.

3.1 Somewhat pairwise fuzzy faintly ω-continuous functions
In this section we investigate some properties of Somewhat pairwise fuzzy faintly ω-continuous functions and we also obtain characterizations of these functions.

Definition 3.1.1
Let (X, T) be a fuzzy topological space. A fuzzy set $\lambda \in \mathcal{I}^X$ is called fuzzy ω-open in (X, T) if $\text{int}(\lambda)$ is fuzzy semi-closed in (X, T).

Definition 3.1.2
Let (X, T) be a fuzzy topological space. A fuzzy set $\lambda \in \mathcal{I}^X$ is called fuzzy ω-open in (X, T) if $\text{int}(\lambda) \neq \emptyset$ implies that there exists a T_1-fuzzy ω-open or T_2-fuzzy ω-open set μ such that $\mu \neq 0$ and $\mu \leq f^{-1}(\lambda)$.

Definition 3.1.3
Let (X, T) and (Y, S) be any two fuzzy topological spaces. A map $f : (X, T) \rightarrow (Y, S)$ is called ω-continuous if $f^{-1}(\lambda)$ is fuzzy ω-open in (X, T) for every fuzzy open set λ in (Y, S).

Definition 3.1.4
Let (X, T_1, T_2) and (Y, S_1, S_2) be any two fuzzy bitopological spaces. A function $f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2)$ is called pairwise fuzzy ω-continuous if for each $\lambda \in S_1$ or $\lambda \in S_2$ the inverse image $f^{-1}(\lambda)$ is T_1-fuzzy ω-open or T_2-fuzzy ω-open in (X, T_1, T_2).

Definition 3.1.5
Let (X, T_1, T_2) and (Y, S_1, S_2) be any two fuzzy bitopological spaces. A function $f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2)$ is called somewhat pairwise fuzzy ω-continuous if $\lambda \in S_1$ or $\lambda \in S_2$ and $f^{-1}(\lambda) \neq \emptyset$ implies that there exists a T_1-fuzzy ω-open or T_2-fuzzy ω-open set μ such that $\mu \neq 0$ and $\mu \leq f^{-1}(\lambda)$.

Definition 3.1.6
Let (X, T_1, T_2) and (Y, S_1, S_2) be any two fuzzy bitopological spaces. A function $f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2)$ is called pairwise fuzzy faintly ω-continuous if $f^{-1}(\lambda) \in T_1$ or $f^{-1}(\lambda) \in T_2$ for every S_1-fuzzy θ-open or S_2-fuzzy θ-open set λ in (Y, S_1, S_2).

Definition 3.1.7
Let (X, T_1, T_2) and (Y, S_1, S_2) be any two fuzzy bitopological spaces. A function $f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2)$ is called pairwise fuzzy faintly ω-continuous if for every S_1-fuzzy θ-open or S_2-fuzzy θ-open set λ, the inverse image $f^{-1}(\lambda)$ is T_1-fuzzy ω-open or T_2-fuzzy ω-open.

Definition 3.1.8
Let (X, T_1, T_2) and (Y, S_1, S_2) be any two fuzzy bitopological spaces. A function $f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2)$ is called somewhat pairwise fuzzy faintly ω-continuous if for every S_1-fuzzy θ-open or S_2-fuzzy θ-open set λ with $f^{-1}(\lambda) \neq \emptyset$ there exists a T_1-fuzzy ω-open or T_2-fuzzy ω-open set μ such that $\mu \neq 0$ and $\mu \leq f^{-1}(\lambda)$.

Every pairwise fuzzy ω-continuous function is somewhat pairwise fuzzy ω-continuous, but the converse need not be true as the following example shows.

Example 3.1.1
Let $X = \{a, b\}$. Define $T_1 = \{0, 1, \delta_1, \delta_2, \delta_3\}$, $T_2 = \{0, 1, \delta_2\}$, $S_1 = \{\delta_1, \delta_2, \gamma_1, \gamma_2\}$, $S_2 = \{0, 1\}$ where $\delta_1, \delta_2, \delta_3, \gamma_1, \gamma_2 : X \rightarrow \{0, 1\}$ are such that $\delta_1(a) = 0.3, \delta_1(b) = 0.4, \delta_2(a) = 0.61, \delta_2(b) = 0.41, \delta_3(a) = 0.7, \delta_3(b) = 0.6$ and $\gamma_1(a) = 0.59, \gamma_1(b) = 0.56, \gamma_2(a) = 0.41, \gamma_2(b) = 0.44$.

Clearly, T_1, T_2, S_1 and S_2 are fuzzy topologies on X. Define $f : (X, T_1, T_2)$
ON SOMEWHAT PAIRWISE FUZZY FAINTLY...

\((X, S_1, S_2) \) as \(f(a) = b \), \(f(b) = a \). Then, \(f \) is not pairwise fuzzy faintly \(\omega \)-continuous since the inverse image \(f^{-1}(\gamma_1) \) is not \(T_1 \)-fuzzy \(\omega \)-open or \(T_2 \)-fuzzy \(\omega \)-open. But \(f \) is somewhat pairwise fuzzy faintly \(\omega \)-continuous since for the \(S_1 \)-fuzzy \(\theta^* \)-open set \(\gamma_1 \) with \(f^{-1}(\gamma_1) \neq \emptyset \), \(\delta_1 \neq 0 \) is \(T_1 \)-fuzzy \(\omega \)-open and \(\delta_1 \leq f^{-1}(\gamma_1) \).

Every pairwise fuzzy faintly continuous function is somewhat pairwise fuzzy faintly \(\omega \)-continuous but the converse need not be true as the following example shows.

Example 3.1.2

Let \(X = \{a, b, c\} \). Define \(T_1 = \{0, 1, \lambda_1, \lambda_2\} \), \(T_2 = \{0, 1\} \), \(S_1 = \{0, 1, \mu_1, \mu_2\} \), \(S_2 = \{0, 1, \mu_3\} \) where \(\lambda_1, \lambda_2, \mu_1, \mu_2, \mu_3 : X \to [0, 1] \) are such that \(\lambda_1(a) = 0.02, \lambda_1(b) = 0, \lambda_2(b) = 1 \), \(\mu_1(a) = 0.1, \mu_1(b) = 0.1, \mu_2(a) = 0.9, \mu_2(b) = 0.9 \) and \(\mu_3(a) = 0.2, \mu_3(b) = 0.3 \). Clearly, \(T_1, T_2, S_1 \) and \(S_2 \) are fuzzy topologies on \(X \). Define \(g : (X, T_1, T_2) \to (X, S_1, S_2) \) as \(g(a) = b \), \(g(b) = a \). Since, \(g(\mu_2) \) is not \(T_1 \)-fuzzy open or \(T_2 \)-fuzzy open, \(g \) is not pairwise fuzzy faintly continuous. But \(g \) is somewhat pairwise fuzzy faintly \(\omega \)-continuous since the fuzzy set \(\gamma : X \to [0, 1] \) defined as \(\gamma(a) = 0.1, \gamma(b) = 0 \) is \(T_1 \)-fuzzy \(\omega \)-open and \(\gamma \leq g(\mu_2) \), for the \(S_1 \)-fuzzy \(\theta^* \)-open set \(S_2 \).

Every pairwise fuzzy faintly continuous mapping is pairwise fuzzy faintly \(\omega \)-continuous, but the converse need not be true as the following example shows.

Example 3.1.3

In Example 7.3.2, \(g \) is not pairwise fuzzy faintly continuous. But \(g \) is pairwise fuzzy faintly \(\omega \)-continuous, since for the \(S_1 \)-fuzzy \(\theta^* \)-open set \(\mu_2, g^{-1}(\mu_2) \) is \(T_1 \)-fuzzy \(\omega \)-open.

The following diagram gives the interrelations:

\[
\begin{array}{ccc}
\text{f is pairwise fuzzy faintly continuous} & \rightarrow & \text{f is somewhat pairwise fuzzy faintly \(\omega \)-continuous} \\
\leftrightarrow & & \leftrightarrow \\
\text{f is pairwise fuzzy faintly \(\omega \)-continuous} & \leftarrow & \text{f is somewhat pairwise fuzzy faintly \(\omega \)-continuous}
\end{array}
\]

Definition 3.1.9

A fuzzy set \(\lambda \) in a fuzzy bitopological space \((X, T_1, T_2) \) is called pairwise fuzzy \(\omega \)-dense (resp. \(\theta^* \)-dense) set if there exists no \(T_1 \)-fuzzy \(\omega \)-closed (resp. \(\theta^* \)-closed) or \(T_2 \)-fuzzy \(\omega \)-closed (resp. \(\theta^* \)-closed) set \(\mu \) in \((X, T_1, T_2) \) such that \(\lambda < \mu < 1 \).

Example 3.1.4

Let \(X = \{a, b, c\} \). Define \(T_1 = \{0, 1, \delta, \gamma\} \), \(T_2 = \{0, 1, \gamma\} \) where \(\delta, \gamma : X \to [0, 1] \) are such that \(\delta(a) = 0, \delta(b) = 1/4, \delta(c) = 1/3 \) and \(\gamma(a) = 1, \gamma(b) = 1/3, \gamma(c) = 1/3 \). Clearly \(T_1 \) and \(T_2 \) are fuzzy topologies on \(X \). Define a fuzzy set \(\lambda : X \to [0, 1] \) such that \(\lambda(a) = 1, \lambda(b) = 3/4, \lambda(c) = 2/3 \). Clearly \(\lambda \) is a pairwise fuzzy \(\omega \)-dense set.

Example 3.1.5

Let \(X = \{a, b, c\} \). Define \(T_1 = \{0, 1, \lambda, \mu\} \), \(T_2 = \{0, 1, \gamma\} \) where \(\lambda, \mu, \gamma : X \to [0, 1] \) are defined as \(\lambda(a) = 1/2, \lambda(b) = 3/4, \lambda(c) = 2/3, \mu(a) = 1/2, \mu(b) = 1/4, \mu(c) = 1/3 \) and \(\gamma(a) = 1/3, \gamma(b) = 1/4, \gamma(c) = 1/3 \). Clearly \(T_1 \) and \(T_2 \) are fuzzy topologies on \(X \). Let \(\eta : X \to [0, 1] \) be such that \(\eta(a) = 3/4, \eta(b) = 3/4, \eta(c) = 2/3 \). Clearly \(\eta \) is a pairwise fuzzy \(\theta^* \)-dense set.

Notation 3.1.1

(a) \(\theta^* - \text{int}_{S_1}^{\mu} (\lambda) \) and \(\theta^* - \text{int}_{S_2}^{\mu} (\lambda) \) denotes the \(S_1 \)-fuzzy \(\theta^* \)-interior and \(S_2 \)-fuzzy \(\theta^* \)-interior of a fuzzy set \(\lambda \) in a fuzzy bitopological space \((X, S_1, S_2) \).
(b) \(\theta^* - \text{cl}_{S_1} (\lambda) \) and \(\theta^* - \text{cl}_{S_2} (\lambda) \) denotes the \(S_1 \)-fuzzy \(\theta^* \)-closure and \\
\(S_2 \)-fuzzy \(\theta^* \)-closure of a fuzzy set \(\lambda \) in a fuzzy bitopological space \((X, S_1, S_2) \).

Notation 3.1.2

(a) \(\omega - \text{int}_{T_1} (\lambda) \) and \(\omega - \text{int}_{T_2} (\lambda) \) denotes the \(T_1 \)-fuzzy \(\omega \)-interior and \\
\(T_2 \)-fuzzy \(\omega \)-interior of a fuzzy set \(\lambda \) in a fuzzy bitopological space \((X, T_1, T_2) \).

(b) \(\omega - \text{cl}_{T_1} (\lambda) \) and \(\omega - \text{cl}_{T_2} (\lambda) \) denotes the \(T_1 \)-fuzzy \(\omega \)-closure and \\
\(T_2 \)-fuzzy \(\omega \)-closure of a fuzzy set \(\lambda \) in a fuzzy bitopological space \((X, T_1, T_2) \).

Proposition 3.1.1

Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any two fuzzy bitopological spaces. Let \(f : (X, T_1, T_2) \to (Y, S_1, S_2) \) be any function. Then the following conditions are equivalent:

(a) \(f \) is somewhat pairwise fuzzy faintly \(\omega \)-continuous.

(b) If \(\lambda \) is \(S_1 \)-fuzzy \(\theta^* \)-closed or \(S_2 \)-fuzzy \(\theta^* \)-closed set such that \\
\(f^{-1} (\lambda) \neq 1 \) then there exists a proper \(T_1 \)-fuzzy \(\omega \)-closed or \\
\(T_2 \)-fuzzy \(\omega \)-closed set \(\mu \) such that \(\mu \leq f^{-1} (\lambda) \).

(c) If \(\lambda \) is a pairwise fuzzy \(\omega \)-dense set in \((X, T_1, T_2) \) then \(f (\lambda) \) is a pairwise fuzzy \(\theta^* \)-dense set in \((Y, S_1, S_2) \).

Proposition 3.1.2

Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any two fuzzy bitopological spaces and \(f : (X, T_1, T_2) \to (Y, S_1, S_2) \) be a somewhat pairwise fuzzy faintly \(\omega \)-continuous function. Let \(A \subset X \) be such that \(\chi_A \land \mu \neq 0 \) for all \\
\(0 \neq \mu \in T_1 \cup T_2 \). Let \(T_1/A \) and \(T_2/A \) be the induced fuzzy topologies on \(A \). Then \(f/A : (A, T_1/A, T_2/A) \to (Y, S_1, S_2) \) is somewhat pairwise fuzzy faintly \(\omega \)-continuous.

Proposition 3.1.3

Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any two fuzzy bitopological spaces and \(X = A \cup B \) where \(A \) and \(B \) are subsets of \(X \) such that \(\chi_A \land \chi_B \in T_1 \cap T_2 \). Let \(f : (X, T_1, T_2) \to (Y, S_1, S_2) \) be such that \(f/A \) and \(f/B \) are somewhat pairwise fuzzy faintly \(\omega \)-continuous. Then \(f \) is somewhat pairwise fuzzy faintly \(\omega \)-continuous.

3.2 Somewhat pairwise fuzzy faintly \(\omega \)-open functions

In this section we investigate some properties of Somewhat pairwise fuzzy faintly \(\omega \)-open functions and we also obtain characterizations of these functions.

Definition 3.2.1

Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any two fuzzy bitopological spaces. A mapping \(f : (X, T_1, T_2) \to (Y, S_1, S_2) \) is called pairwise fuzzy \(\omega \)-open if for every \(T_1 \)-fuzzy \(\omega \)-open or \(T_2 \)-fuzzy \(\omega \)-open set \(\lambda \), the image \(f(\lambda) \) is \(S_1 \)-fuzzy \(\omega \)-open or \(S_2 \)-fuzzy \(\omega \)-open.

Definition 3.2.2

Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any two fuzzy bitopological spaces. A mapping \(f : (X, T_1, T_2) \to (Y, S_1, S_2) \) is called somewhat pairwise fuzzy \(\omega \)-open if for every \(T_1 \)-fuzzy \(\omega \)-open or \(T_2 \)-fuzzy \(\omega \)-open set \(\lambda \) with \(\lambda \neq 0 \), there exists a \(S_1 \)-fuzzy \(\omega \)-open or \(S_2 \)-fuzzy \(\omega \)-open set \(\mu \) such that \(\mu \neq 0 \) and \(\mu \leq f(\lambda) \).

Definition 3.2.3

Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any two fuzzy bitopological spaces. A mapping \(f : (X, T_1, T_2) \to (Y, S_1, S_2) \) is called somewhat pairwise fuzzy faintly \(\omega \)-open if for every \(T_1 \)-fuzzy \(\omega \)-open or \(T_2 \)-fuzzy \(\omega \)-open set \(\lambda \) with \(\lambda \neq 0 \), there exists a \(S_1 \)-fuzzy \(\theta^* \)-open or \(S_2 \)-fuzzy \(\theta^* \)-open set \(\mu \) such that \(\mu \neq 0 \) and \(\mu \leq f(\lambda) \). That is, \(\theta^* - \text{int}_{S_1} (f(\lambda)) \neq 0 \) or \(\theta^* - \text{int}_{S_2} (f(\lambda)) \neq 0 \). Every pairwise fuzzy \(\omega \)-open function is somewhat pairwise fuzzy \(\omega \)-open, but the converse need not be true as shown in the following example.
Example 3.2.1
Let \(X = \{ a, b, c \} \). Define \(T_1 = \{ \emptyset, \{1\}, \{1,2\} \}, \ T_2 = \{ \emptyset, 1 \} \),
\(S_1 = \{ 0, 1, 2 \}, S_2 = \{ 0, 1, 2 \} \) where \(\mu_1, \mu_2, \delta_1, \delta_2 : X \rightarrow [0,1] \) are defined as \(\mu_1(a) = 0.1, \mu_1(b) = 0.2, \mu_2(a) = 0.9, \mu_2(b) = 0.8, \delta_1(a) = 0.1, \delta_1(b) = 0.3, \delta_2(a) = 0.3. \) Clearly \(T_1, T_2, S_1, \) and \(S_2 \) are fuzzy topologies on \(X \). Let \(f : (X, T_1, T_2) \rightarrow (X, S_1, S_2) \) be the identity function. Let \(\lambda : X \rightarrow [0,1] \) be such that \(\lambda(a) = 0.2, \lambda(b) = 0.2. \) Now, \(\lambda \) is \(T_1 \)-fuzzy \(\omega \)-open but \(\lambda = f(\lambda) \) is not \(S_1 \)-fuzzy \(\omega \)-open or \(S_2 \)-fuzzy \(\omega \)-open. Therefore, \(f \) is not pairwise fuzzy \(\omega \)-open. Since \(\lambda = f(\lambda) \) is \(S_1 \)-fuzzy \(\omega \)-open and \(\delta_1 \) is \(S_1 \)-fuzzy \(\omega \)-open such that \(\delta_1 \neq 0 \) and \(\delta_1 \leq \lambda = f(\lambda) \). \(f \) is somewhat pairwise fuzzy \(\omega \)-open.

Every pairwise fuzzy faintly \(\omega \)-open function is somewhat pairwise fuzzy faintly \(\omega \)-open but the converse need not be true as the following example shows.

Example 3.2.2
Let \(X = \{ a, b \} \). Define \(T_1 = \{ \emptyset, 1, \gamma \}, T_2 = \{ \emptyset, 1, \} \),
\(S_1 = \{ 0, 1, \mu_1, \mu_2 \}, S_2 = \{ 0, 1, \delta \} \) where \(\lambda, \gamma, \mu_1, \mu_2, \delta : X \rightarrow [0,1] \) are defined as \(\lambda(a) = 0.02, \lambda(b) = 0, \gamma(a) = 0.98, \gamma(b) = 1, \mu_1(a) = 0.05, \mu_1(b) = 0, \mu_2(a) = 0.95, \mu_2(b) = 1, \) and \(\delta(a) = 0.5, \delta(b) = 0.5. \) Clearly \(T_1, T_2, S_1, \) and \(S_2 \) are fuzzy topologies on \(X \). Let \(f : (X, T_1, T_2) \rightarrow (X, S_1, S_2) \) be the identity function. Let \(\eta : X \rightarrow [0,1] \) be such that \(\eta(a) = 0.96, \eta(b) = 1. \) Then, \(\eta \) is \(T_1 \)-fuzzy \(\omega \)-open but \(f(\eta) = \eta \) is not \(S_1 \)-fuzzy \(\theta^* \)-open or \(S_2 \)-fuzzy \(\theta^* \)-open. Therefore, \(f \) is not pairwise fuzzy faintly \(\omega \)-open. Since \(\mu_2 \neq 0 \) is \(S_2 \)-fuzzy \(\theta^* \)-open and \(\mu_2 \leq f(\eta) \), \(f \) is somewhat pairwise fuzzy faintly \(\omega \)-open.

Proposition 3.2.1
Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any fuzzy bitopological spaces if \(f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2) \) and \(g : (Y, S_1, S_2) \rightarrow (Z, R_1, R_2) \) are somewhat pairwise fuzzy faintly \(\omega \)-open functions then \(g \circ f : (X, T_1, T_2) \rightarrow (Z, R_1, R_2) \) is a somewhat pairwise fuzzy faintly \(\omega \)-open function.

Proposition 3.2.2
Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any two fuzzy bitopological spaces and let \(f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2) \) be a one-to-one and onto function. Then the following conditions are equivalent:
(a) \(f \) is somewhat pairwise fuzzy faintly \(\omega \)-open.
(b) If \(\lambda \) is a pairwise fuzzy \(\theta \)-dense set in \((Y, S_1, S_2) \), then \(f^{-1}(\lambda) \) is a pairwise fuzzy \(\omega \)-dense set in \((X, T_1, T_2) \).

Proposition 3.2.3
Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any two fuzzy bitopological spaces and let \(f : (X, T_1, T_2) \rightarrow (Y, S_1, S_2) \) be a one-to-one and onto function. Then the following conditions are equivalent:
(a) \(f \) is somewhat pairwise fuzzy faintly \(\omega \)-open.
(b) If \(\lambda \) is a \(T_1 \)-fuzzy \(\omega \)-closed or \(T_2 \)-fuzzy \(\omega \)-closed set in \((X, T_1, T_2) \) such that \(f(\lambda) \neq 1 \), then there exists a \(S_1 \)-fuzzy \(\theta^* \)-closed or \(S_2 \)-fuzzy \(\theta^* \)-closed set \(\mu \) in \((Y, S_1, S_2) \) such that \(\mu \neq 1 \) and \(\mu > f(\lambda) \).

Definition 3.2.4
A fuzzy bitopological space \((X, T_1, T_2) \) is called a pairwise fuzzy \(D \)-space if every non-zero fuzzy set \(\lambda \) in \(T_1 \) or \(\lambda \) in \(T_2 \) of \((X, T_1, T_2) \) is dense in \((X, T_1, T_2) \).

Definition 3.2.5
A fuzzy bitopological space \((X, T_1, T_2) \) is called a pairwise fuzzy \(D_{\theta^*} \)-space (resp. \(D_0 \)-space) if every non-zero fuzzy \(T_1 \)-fuzzy \(\omega \)-open (resp. \(\theta^* \)-open) or \(T_2 \)-fuzzy \(\omega \)-open (resp. \(\theta^* \)-open) set in \((X, T_1, T_2) \) is pairwise fuzzy \(\omega \)-dense (resp. \(\theta^* \)-dense) in \((X, T_1, T_2) \).
Proposition 3.2.4
Let \(f : (X, T_1, T_2) \to (Y, S_1, S_2) \) be somewhat pairwise fuzzy faintly \(\omega \)-continuous. Suppose \((X, T_1, T_2) \) is a pairwise fuzzy \(D_\omega \)-space. Then \((Y, S_1, S_2) \) is a pairwise fuzzy \(D_\omega^* \)-space.

Proposition 3.2.5
Let \((X, T_1, T_2) \) and \((Y, S_1, S_2) \) be any two fuzzy bitopological spaces. Let \(X = A \cup B \) where \(A \) and \(B \) are subsets of \(X \) and \(f : (X, T_1, T_2) \to (Y, S_1, S_2) \) is a function such that \(f/A \) and \(f/B \) are somewhat pairwise fuzzy faintly \(\omega \)-open. Then \(f \) is somewhat pairwise fuzzy faintly \(\omega \)-open.

Proposition 3.2.6
Let \(f : (X, T_1, T_2) \to (Y, S_1, S_2) \) be any function from a fuzzy bitopological space \((X, T_1, T_2) \) to another fuzzy bitopological space \((Y, S_1, S_2) \). If the graph \(g : X \to X \times Y \) of \(f \) is somewhat pairwise fuzzy faintly \(\omega \)-continuous then \(f \) is also somewhat pairwise fuzzy faintly \(\omega \)-continuous.

Proposition 3.2.7
Let \(f : (X, T_1, T_2), (X_1, S_1, S_2) \) and \((X_2, R_1, R_2) \) be any three fuzzy bitopological spaces. Let \(p_i : X_1 \times X_2 \to X_i \) \((i = 1, 2)\) be the projection mappings. If \(f : X \to X_1 \times X_2 \) is a somewhat pairwise fuzzy \(\omega \)-continuous function then \(p_i \circ f \) is also somewhat pairwise fuzzy \(\omega \)-continuous function for \(i = 1,2 \).

Acknowledgement
The authors thank the referees for their valuable suggestions regarding the betterment of the paper.

References