Labellings of Fuzzy Graph Structures as Fuzzy Algebra of Incidence Algebra

Dinesh T. and Ramakrishnan T.V.
Department of Mathematical Sciences
Kannur University, Mangattuparamba
Kannur University Campus P.O.-670 567
Kerala, India
dineshtek@gmail.com

Abstract

The authors established a relation between incidence algebras and the R_i-labellings, R_i-index vectors, labelling matrices and index matrices of a graph structure and a relation between fuzzy algebra of an incidence algebra and the labellings and index vectors of a fuzzy graph in previous papers. Here we extend these concepts to fuzzy graph structures.

Subject classification: Primary 05C72, Secondary 05C78, 06A11.

Keywords: Fuzzy graph structures, R_i-labelling, R_i-index vector, Labelling matrix, Index matrix, Fuzzy algebra of incidence algebra.

1. Introduction

Based on the works of Brouwer[2], Doob[9] and Stewart[16], Jeurissen[12] defined index vectors, labelings and admissible index vectors of graphs. We established some relations between graph labelings and incidence algebras in [6] and extended the concepts to graph structures in [7]. Later we established relations between a fuzzy algebra of an incidence algebra and the labellings and index vectors of a fuzzy graph in [8]. Here we extend this to fuzzy graph structures.

For concepts on Graph Theory, reference may be made to [11], for fuzzy graphs to [13] and for incidence algebras, to [15] and [10].

2. Preliminaries

We recall the concept of graph structure given by Sampathkumar[14] and fuzzy graph structure given by the authors in [3].

Definition 2.1 [14]

$G = (V,R_1,R_2,...,R_k)$ is a graph structure if V is a non empty set and $R_1,R_2,...,R_k$ are relations on V which are mutually disjoint such that each R_i, $i=1,2,...,k$, is symmetric and irreflexive. If $(u,v) \in R_i$ for some $i,1 \leq i \leq k$, (u,v) is an R_i-edge. R_i-path between two vertices u and v consists only of R_i-edges. G is $R_1R_2...R_k$ connected if G is R_i-connected for each i.

Definition 2.2 [3]
Let G be a graph structure $(V,R_1,R_2,...,R_k)$ and $\mu,\rho_1,\rho_2,...,\rho_k$ be fuzzy subsets of $V,R_1,R_2,...,R_k$ respectively such that $\rho_i(x,y) \leq \mu(x) \land \mu(y) \forall x,y \in V, i=1,2,...,k$. Then $\mathcal{G} = (\mu, \rho_1, \rho_2,..., \rho_k)$ is a fuzzy graph structure of G.

We now recall the concepts of R_i-labellings and R_i-index vectors of a graph structure and some results obtained in [4].

Definition 2.3 [4]

Let F be an abelian group or a ring and $G = (V,R_1,R_2,...,R_k)$ be a graph structure with vertices $v_0,v_1,...,v_{p-1}$ and q_i number of R_i-edges. A mapping $r_i:V \rightarrow F$ is an R_i-index vector with components $r_i(v_0), r_i(v_1),..., r_i(v_{p-1})$, $i=1,2,...,k$ and a mapping $r_i: R_i \rightarrow F$ is an R_i-labelling with components $x_i(e^i_1), x_i(e^i_2),..., x_i(e^i_{p})$, $i=1,2,...,k$.

An R_i-labelling x_i is an R_i-labelling for the R_i-index vector r_i iff $r_i(v_j) = \sum_{e \in E_j} x_i(e)$. where E_j is the set of all R_i-edges incident with v_j. R_i-index vectors for which an R_i-labelling exists are called admissible R_i-index vectors.

Now we recall the concepts of partial order, pre-order, incidence algebra etc. from [15].

Definition 2.4 [15]

A set X with a binary relation \leq is a pre-ordered set if \leq is reflexive and transitive. If \leq is reflexive, transitive and antisymmetric, then X is a partially ordered set (poset).

Spiegel and O'Donnell [15] gives the definition of incidence algebra as follows.

Definition 2.5 [15]

The incidence algebra $I(X,R)$ of the locally finite partially ordered set X over the commutative ring R with identity is $I(X,R) = \{ f:X \times X \rightarrow R | f(x,y) = 0 \text{ if } x \text{ is not less than or equal to } y \}$ with operations given by $(f+g)(x,y) = f(x,y) + g(x,y)$ $(f.g)(x,y) = \sum_{z \in X} f(x,z).g(z,y)$ $(r.f)(x,y) = r.f(x,y)$ for $f,g \in I(X,R)$ with $r \in R$ and $x,y,z \in X$.

In [10], Foldes and Meletiou says about incidence algebra of pre-order as follows.

Definition 2.6 [10]

Given a field F, the incidence algebra $A(\rho)$, of a pre-order set $(S,\rho), S=\{1,2,...,n\}$ over F is the set of maps $\alpha:S^2 \rightarrow F$ such that $\alpha(x,y)=0$ unless $x \rho y$. The addition and multiplication in $A(\rho)$ are defined as matrix sum and product.

3. ρ_i-labellings and ρ_i-index vectors of a fuzzy graph structure

Now we move on to define ρ_i-labellings, ρ_i-index vectors etc. of a fuzzy graph structure.

Definition 3.1

Let $\mathcal{G} = (\mu,\rho_1,\rho_2,...,\rho_k)$ be a fuzzy graph structure. Let $r_i:V \rightarrow F$ and $x_i: R_i \rightarrow F$, $i=1,2,...,k$. We have $x_i(r_i(x_i, u)) = \sup_{f \in \mu}(x_i(r_i(x_i, u))) \quad \text{and} \quad \rho_i(r_i(u)) = \sup_{r \in \mu}(r_i(r_i(u))) \mu(u)$. Then $\tilde{r}_i = (r_i, r_i(\mu))$ is a ρ_i-index vector of \mathcal{G} if r_i is an R_i-index vector for $\mathcal{G}^* = (\sup(\mu), \sup(\rho_1), \sup(\rho_2),..., \sup(\rho_k))$. $\tilde{x}_i = (x_i, x_i(\rho_i))$ is a ρ_i-labelling of \mathcal{G} if x_i is an R_i-labelling for $\mathcal{G}^* = (\sup(\mu), \sup(\rho_1), \sup(\rho_2),..., \sup(\rho_k))$.

1370
Labellings of Fuzzy Graph Structures as Fuzzy Algebra of Incidence Algebra

Definition 3.2

For a fuzzy graph structure \(\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k) \),
1. \(\tilde{r}_i = (r_i, r_i(\mu)) \) is admissible if \(r_i \) is so for \(\tilde{G}^* = (\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k)) \). Then \(\tilde{x}_i = (x_i, x_i(\rho_i)) \) is a \(\rho_i \)-labelling for \(\tilde{r}_i \).
2. \(\tilde{r}_i \) is fuzzy admissible if \(r_i(\mu)(r_i(v_i)) \geq \bigwedge_{v_j(v_i,v_j) > 0} x_i \left(\rho_j \right) x_i \left(v_j, v_j \right) \) \(\forall \ v_i \in V \).

Then \(\tilde{x}_i \) is a fuzzy \(\rho_i \)-labelling for \(\tilde{r}_i \).

In [4], we studied the operations of addition and scalar multiplication of \(R_1 \)-index vectors and \(R_1 \)-labellings of a graph structure. We introduced multiplication in [7]. We recall them now.

Let \(G = (V, R_1, R_2, ..., R_k) \) be a graph structure. \((x_1^1 + x_2^1)(v_i, v_m) = x_1^1(v_i, v_m) + x_2^1(v_i, v_m) \)
\((x_1^1, x_2^1)(v_i, v_m) = \sum_{(v_i, v_j), (v_j, v_m) \in R_i} x_1^1(v_i, v_j) x_2^1(v_j, v_m) \), \(\forall (v_i, v_m) \in R_i \).
\((r^1 + r^2)(v_i) = r^1(v_i) + r^2(v_i) \)
\((fr^1)(v_i) = f(r^1(v_i)) \)
\((r^1, r^2)(v_i) = \sum_{(v_i, v_j), (v_j, v_m) \in R_i} r^1_i(v_j) r^2_i(v_m) \), \(\forall v_i \in V \).

Now we recall some of the results proved in [7].

Theorem 3.1 [7]

The set \(I_{I_1(A_j)}(V, F) \) of \(R_i \)-labellings for all admissible \(R_i \)-index vectors of a graph structure \(G = (V, R_1, R_2, ..., R_k) \) is a subalgebra of \(I(V, F) \) where \(A_i \) is the collection of all admissible \(R_i \)-index vectors.

Theorem 3.2 [7]

The set \(I_{I_1(A_j)}(V, F) \) of \(R_i \)-labellings for \(\lambda_i \in F \), \(\lambda_i \) an all 1 vector, of a graph structure \(G = (V, R_1, R_2, ..., R_k) \) forms a subalgebra of the incidence algebra \(I(V, F) \).

Theorem 3.3 [7]

The set \(I_{I_1(A_j)}(V, F) \) of \(R_i \)-labellings for 0 of a graph structure \(G = (V, R_1, R_2, ..., R_k) \) forms a subalgebra of the incidence algebra \(I(V, F) \).

We now establish some relation between the fuzzy \(\rho_i \)-labellings and fuzzy \(\rho_i \)-index vectors with a fuzzy algebra of the incidence algebra related with a graph structure.

Note that by a fuzzy algebra of an incidence algebra, we mean a collection of mappings from a fuzzy subset of \(V \times V \) to a fuzzy subset of \(F \) which forms a subalgebra of \(I(V, F) \).

Theorem 3.4

The set of fuzzy \(\rho_i \)-labellings \(Fl_{I_1(A_j)}(V, F) \) for fuzzy admissible \(\rho_i \)-index vectors of a fuzzy graph structure \(\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k) \) is a fuzzy algebra of the incidence algebra \(I(V, F) \).

Proof

Let \(\tilde{x}_i^1, \tilde{x}_i^2 \) be fuzzy \(\rho_i \)-labellings for the fuzzy admissible \(\rho_i \)-index vectors \(\tilde{r}_i^1, \tilde{r}_i^2 \). Then by definition \(x_i^1, x_i^2 \) are \(R_i \)-labellings for \(r_i^1, r_i^2 \) in \(\tilde{G}^* = (\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), ..., \text{supp}(\rho_k)) \). So from theorem 3.1, \(x_i^1 + x_i^2, x_i^1 x_i^2 \) and \(fx_i^1 \) are \(R_i \)-labellings for \(r_i^1 + r_i^2, r_i^1 r_i^2 \) and \(fr_i^1 \) respectively in \(\tilde{G}^* \).

Also
\[(r_1^1 + r_2^2)(u) (r_1^1 + r_2^2)(v) = \sup_{u,(r_1^1 + r_2^2)(u) = (r_1^1 + r_2^2)(v)} \mu(u) \]
\[\geq \sup_{u,r_1^1(u) = r_1^1(v),r_2^2(u) = r_2^2(v)} \mu(u) \]

But
\[r_1^1(u) = \sum_{(u,v) \in R_{iu}} x_1^1(u,v) \]
\[r_1^1(v) = \sum_{(v,m) \in R_{iv}} x_1^1(v,m) \]
\[r_2^2(u) = \sum_{(u,v) \in R_{iu}} x_2^2(u,v) \]
\[r_2^2(v) = \sum_{(v,m) \in R_{iv}} x_2^2(v,m) \]

where \(R_{iu}\) and \(R_{iv}\) are the sets of \(\rho_i\)-edges incident with \(u\) and \(v\) respectively in \(G^*\).

Hence
\[\sup_{u,r_1^1(u) = r_1^1(v),r_2^2(u) = r_2^2(v)} \mu(u) \geq \bigwedge_{\rho_1(u,v),\rho_1(v,m) > 0} \left[\sup_{\rho_1(u,v),\rho_1(v,m) > 0} \left\{ \rho_1(u,v) | (u,v): \sum_{(u,v) \in R_{iu}} (x_1^1 + x_2^2)(u,v) \right\} = \sum_{(v,l,v,m) \in R_{iv}} (x_1^1 + x_2^2)(v_l,v_m) \right] \]

Therefore \(x_1^1 + x_2^2\) is a fuzzy \(\rho_1\)-labelling for \(r_1^1 + r_2^2\).

\[(r_1^1, r_2^2)(u) (r_1^1, r_2^2)(v) = \sup_{u,(r_1^1, r_2^2)(u) = (r_1^1, r_2^2)(v)} \mu(u) \]
\[\geq \sup_{u,(r_1^1 + r_2^2)(u) = (r_1^1 + r_2^2)(v)} \mu(u) \]

since \((r_1^1, r_2^2)(u) = \sum_{s \in (u,s)} \sup_{\rho_2(s)} r_1^1(u)r_1^1(s)\).

Hence as in the previous case,
\[\bigwedge_{\rho_1(u,v),\rho_1(v,m) > 0} \left[\sup_{\rho_1(u,v),\rho_1(v,m) > 0} \left\{ \rho_1(u,v) | (u,v): \sum_{(u,v) \in R_{iu}} (x_1^1 \cdot x_2^2)(u,v) = \sum_{(v,l,v,m) \in R_{iv}} (x_1^1 \cdot x_2^2)(v_l,v_m) \right\} \right] \]

Therefore \(x_1^1 \cdot x_2^2\) is a fuzzy \(\rho_1\)-labelling for \(r_1^1 \cdot r_2^2\).

\((fr_1^1)(u) (fr_1^1)(v) = \sup_{u,(fr_1^1)(u) = (fr_1^1)(v)} \mu(u) \]
\[\geq \sup_{u,(fr_1^1)(u) = (fr_1^1)(v)} \mu(u) \]

As in the previous case,
\[\bigwedge_{\rho_1(u,v),\rho_1(v,m) > 0} \left[\sup_{\rho_1(u,v),\rho_1(v,m) > 0} \left\{ \rho_1(u,v) | (u,v): \sum_{(u,v) \in R_{iu}} (fx_1^1)(u,v) = \sum_{(v,l,v,m) \in R_{iv}} (fx_1^1)(v_l,v_m) \right\} \right] \]

Therefore \(\tilde{x}_1^1\) is a fuzzy \(\rho_1\)-labelling for \((fr_1^1)\).

So the set, \(F_{I(A)} (V,F)\), of all fuzzy \(\rho_1\)-labellings for the set of all fuzzy admissible \(\rho_1\)-index vectors, is a fuzzy algebra of the incidence algebra \(I(V,F)\).
Labellings of Fuzzy Graph Structures as Fuzzy Algebra of Incidence Algebra

Theorem 3.5

The set of fuzzy ρ_1-labellings, $F_{\rho_1}(V,F)$ for $\tilde{0}$ is a fuzzy algebra of the incidence algebra $I(V,F)$.

Proof

Let $x^1_\tilde{0}, x^2_\tilde{0}$ be fuzzy ρ_1-labellings for the fuzzy ρ_1-index vector $\tilde{0}$. Then by definition $x^1_\tilde{0}, x^2_\tilde{0}$ are R_1-labellings for 0 in $\tilde{G}^*=(supp(\mu), supp(\rho_1), supp(\rho_2), ..., supp(\rho_n))$. So from theorem 3.3, $x^1_\tilde{0} + x^2_\tilde{0}, x^1_\tilde{0} \cdot x^2_\tilde{0}$ and $fx^1_\tilde{0}$ are R_1-labellings for 0 in \tilde{G}^*.

$(0 + 0)(\mu)(0 + 0)(\nu) =
\sup_{u:0+(0+0)(u)=(0+0)(\nu)} \mu(u) =
\sup_{u:0(0+0)(u)=0(0+0)(\nu)} \mu(u)$.

But $0(u) = \sum_{(u,v)\in R_{iu}} x^1_\tilde{0}(u,v) = \sum_{(u,v)\in R_{iu}} x^2_\tilde{0}(u,v)$
$0(\nu) = \sum_{(u,v)\in R_{iv}} x^1_\tilde{0}(v_l, v_m) = \sum_{(u,v)\in R_{iv}} x^2_\tilde{0}(v_l, v_m)$

where R_{iu} and R_{iv} are sets of ρ_1-edges incident with u and v_l respectively in \tilde{G}^*.

Hence $\sup_{u:0(0+0)(u)=0(0+0)(\nu)} \mu(u) =
\bigwedge_{\rho_1(u,v)\neq 0(u,v)} \left[\sup \left\{ \rho_1(u,v) | (u,v): \sum_{(u,v)\in R_{iu}} (x^1_\tilde{0} + x^2_\tilde{0})(u,v) = \sum_{(v_l,v_m)\in R_{iv}} (x^1_\tilde{0} + x^2_\tilde{0})(v_l,v_m) \right\} \right]$.

Therefore $x^1_\tilde{0} + x^2_\tilde{0}$ is a fuzzy ρ_1-labelling for $\tilde{0} + \tilde{0}$.

$(0.0)(\mu)(0.0)(\nu) = \sup_{u:(0.0)(u)=(0.0)(\nu)} \mu(u) \geq \sup_{u:0(0)(u)=0(0)(\nu)} \mu(u)$.

since $(0.0)(u) = \sum_{(u,v)\in supp(\rho_1)} 0(u)(v)$.

Hence as in the previous case, $(0.0)(\mu)(0.0)(\nu) \geq
\bigwedge_{\rho_1(u,v)\neq 0(u,v)} \left[\sup \left\{ \rho_1(u,v) | (u,v): \sum_{(u,v)\in R_{iu}} (x^1_\tilde{0} \cdot x^2_\tilde{0})(u,v) = \sum_{(v_l,v_m)\in R_{iv}} (x^1_\tilde{0} \cdot x^2_\tilde{0})(v_l,v_m) \right\} \right]$.

Therefore $x^1_\tilde{0} \cdot x^2_\tilde{0}$ is a fuzzy ρ_1-labelling for $\tilde{0}\tilde{0}$.

$(f0)(\mu)(f0)(\nu) = \sup_{u:(f0)(u)=(f0)(\nu)} \mu(u) \geq \sup_{u:f0(0)(u)=f0(0)(\nu)} \mu(u)$.

As in the previous case,
$\sup_{u:f0(0)(u)=f0(0)(\nu)} \mu(u) \geq
\bigwedge_{\rho_1(u,v)\neq f0(u,v)} \left[\sup \left\{ \rho_1(u,v) | (u,v): \sum_{(u,v)\in R_{iu}} (fx^1_\tilde{0})(u,v) = \sum_{(v_l,v_m)\in R_{iv}} (fx^1_\tilde{0})(v_l,v_m) \right\} \right]$.

Therefore $f\tilde{x}^1_\tilde{0}$ is a fuzzy ρ_1-labelling for $\tilde{f0}$.

1373
Hence the set of all fuzzy \(\rho_l \)-labellings for \(\hat{0} \) is a fuzzy algebra of the incidence algebra \(I(V,F) \).

Theorem 3.6

The set, \(\text{Fl}_{I(V,F)}(V,F) \) of fuzzy \(\rho_l \)-labellings for \(\hat{\lambda}_{J_l} \), is a fuzzy algebra of the incidence algebra \(I(V,F) \).

Proof

Let \(x^1_l, x^2_l \) be fuzzy \(\rho_l \)-labellings for the fuzzy admissible \(\rho_l \)-index vectors \(\hat{\lambda}_{J_l} \). Then by definition \(x^1_l, x^2_l \) are \(R_l \)-labellings for \(\lambda^1_l, \lambda^2_l \) in \(\hat{G}^* = (\text{supp}(\mu), \text{supp}(\rho), \cdots, \text{supp}(\rho_k)) \). So from theorem 3.2, \(x^1_l + x^2_l \) and \(f x^1_l \) are \(R_l \)-labellings for \(\lambda^1_l + \lambda^2_l, \lambda^1_l \cdot \lambda^2_l \) and \(f \lambda^1_l \) respectively in \(\hat{G}^* \).

\[
(\lambda^1_l + \lambda^2_l)(\mu) (\lambda^1_l + \lambda^2_l)(v_l) = \sup_{u:(\lambda^1_l + \lambda^2_l)(u) = (\lambda^1_l + \lambda^2_l)(v_l)} \mu(u) \\
\geq \sup_{u:(\lambda^1_l + \lambda^2_l)(u) = \lambda^1_l(v_l), \lambda^2_l(u) = \lambda^2_l(v_l)} \mu(u)
\]

But

\[
\lambda^1_l(u) = \sum_{(u,v) \in R_{u_l}} x^1_l(u,v) \\
\lambda^2_l(u) = \sum_{(u,v) \in R_{v_l}} x^2_l(u,v)
\]

Therefore \(x^1_l + x^2_l \) is a fuzzy \(\rho_l \)-labellings for \(\lambda^1_l + \lambda^2_l \).

\[
(\lambda^1_l, \lambda^2_l)(\mu) (\lambda^1_l, \lambda^2_l)(v_l) = \sup_{u:(\lambda^1_l, \lambda^2_l)(u) = (\lambda^1_l, \lambda^2_l)(v_l)} \mu(u) \\
\geq \sup_{u:(\lambda^1_l, \lambda^2_l)(u) = \lambda^1_l(v_l), \lambda^2_l(u) = \lambda^2_l(v_l)} \mu(u)
\]

since \((\lambda^1_l, \lambda^2_l)(u) = \sum_{e \in (u,v)} \text{supp}(\rho) \lambda^1_l(u) \lambda^2_l(v) \).

Hence as in the previous case, \((\lambda^1_l, \lambda^2_l)(\mu) (\lambda^1_l, \lambda^2_l)(v_l) \geq \)

\[
\sup_{u:(\lambda^1_l, \lambda^2_l)(u) = \lambda^1_l(v_l), \lambda^2_l(u) = \lambda^2_l(v_l)} \mu(u)
\]

1374
Therefore \(x_1^1 \cdot x_2^2 \) is a fuzzy \(\rho_i \)-labelling for \(\lambda_i^1, \lambda_i^2 \).

\[
(f\lambda_i^1)(\mu)(f\lambda_i^1)(v) = \sup_{u:(f\lambda_i^1)(u)=(f\lambda_i^1)(v)} \mu(u) \geq \sup_{u:(f\lambda_i^1)(u)=(f\lambda_i^1)(v)} \mu(u)
\]

As in the previous case,

\[
\sup_{u:(f\lambda_i^1)(u)=(f\lambda_i^1)(v)} \mu(u) \geq \bigwedge_{\rho_j(u,v), \rho_j(v,v_m)>0} \left[\sup \left\{ \rho_i(u,v), (u,v): \sum_{(u,v) \in R_{iuv}} (f\lambda_i^1)(u,v) = \sum_{(v_l,v_m) \in R_{vlv}} (f\lambda_i^1)(v_l,v_m) \right\} \right]
\]

Therefore \(\tilde{x}_i^1 \) is a fuzzy \(\rho_i \)-labelling for \(\tilde{\lambda}_i^1 \).

So \(F_{\lambda_i^1}(V,F) \) is a fuzzy algebra of the incidence algebra \(I(V,F) \).

4. Fuzzy labellings of a fuzzy graph structure and fuzzy algebra of an incidence algebra

We now extend the results in the previous section to the whole of the fuzzy graph structure. For that first we recall some concepts and results from [5] and [7].

Definition 4.1 [5]

Let \(F \) be an abelian group or a ring. Let \(r_i \) be an \(R_i \)-index vector and \(x_i \) be an \(R_i \)-labelling for \(i = 1,2,\ldots,k \). Then

\[
x = \begin{bmatrix}
x_1 & 0 & 0 & \ldots & 0 \\
0 & x_2 & 0 & \ldots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & x_k
\end{bmatrix}
\]

is a labelling matrix and

\[
r = \begin{bmatrix}
r_1 & 0 & 0 & \ldots & 0 \\
0 & r_2 & 0 & \ldots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & r_k
\end{bmatrix}
\]

is an index matrix for the graph structure

\[
G = (V,R_1,R_2,\ldots,R_k).
\]

\[
x : \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_k \end{bmatrix} \rightarrow F^k
\]

is a labelling for \(r : V^k \rightarrow F^k \) if \(\sum_{m \in E_x} x_i(m) = r_i(v_s) \) for \(s = 0,1,\ldots,p-1 ; i = 1,2,\ldots,k \). If \(r_i \) is an admissible \(R_i \)-index vector \(i = 1,2,\ldots,k \), then \(r \) is called an admissible index matrix for \(G \).

Theorem 4.1 [7]

The set \(I_{L(A)}(V^k,F^k) \) of labelling matrices for all admissible index matrices of a graph structure \(G = (V,R_1,R_2,\ldots,R_k) \) is a subalgebra of \(I(V^k,F^k) \).

Theorem 4.2 [7]

The set \(I_{L(A)}(V^k,F^k) \) of labelling matrices for \(A \),
Now we define fuzzy labellings and fuzzy index matrices of a fuzzy graph structure as follows.

\[
\begin{pmatrix}
\lambda_1 & 0 & 0 & \ldots & 0 \\
0 & \lambda_2 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & \lambda_k \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
j_1 & 0 & 0 & \ldots & 0 \\
0 & j_2 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
j_i & \ldots & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & j_k \\
\end{pmatrix}
\]

\(A=\begin{pmatrix}
\sum_{i=1}^{k} j_i & \ldots & \ldots & \ldots \\
0 & \sum_{i=1}^{k} \lambda_i \cdot j_i \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & \sum_{i=1}^{k} \lambda_i \cdot j_i \\
\end{pmatrix}
\]

\(J=\begin{pmatrix}
j_1 & 0 & 0 & \ldots & 0 \\
0 & j_2 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
j_i & \ldots & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & j_k \\
\end{pmatrix}
\)

\(J_i \) an all 1 vector for \(i=1,2,\ldots,k\)

of a graph structure \(G=(V,R_1,R_2,\ldots,R_k)\) is a subalgebra of \(I(V^k,F^k)\).

Theorem 4.3 [7]

The set \(I_{L(0)}(V^k,F^k)\) of labelling matrices for 0 of a graph structure \(G=(V,R_1,R_2,\ldots,R_k)\) is a subalgebra of \(I(V^k,F^k)\).

Now we define fuzzy labellings and fuzzy index matrices of a fuzzy graph structure as follows.

Definition 4.2

Let \(F\) be an abelian group or a ring. \(\tau_i\) be an \(R_i\)-index vector, \(x_i\) be an \(R_i\)-labelling for \(i=1,2,\ldots,k\). Then

\[
\begin{pmatrix}
x_1^i & 0 & 0 & \ldots & 0 \\
0 & x_2^i & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & x_k^i \\
\end{pmatrix}
\]

is a labelling matrix and

\[
\begin{pmatrix}
\tilde{r}_1 & 0 & 0 & \ldots & 0 \\
0 & \tilde{r}_2 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & \ldots & \tilde{r}_k \\
\end{pmatrix}
\]

is an index matrix of a fuzzy graph structure.

\(\tilde{x}\) is a labelling for \(\tilde{r}\) if \(\tilde{x}\) is a \(\rho_i\)-labelling for \(i=1,2,\ldots,k\). If \(\tilde{r}\) is an admissible \(\rho_i\)-index vector for \(i=1,2,\ldots,k\), \(\tilde{r}\) is an admissible index matrix for \(\tilde{G}\). If \(\tilde{r}\) is fuzzy admissible for \(i=1,2,\ldots,k\), \(\tilde{r}\) is fuzzy admissible and \(\tilde{x}\) is a fuzzy labelling.

Now we move on to prove certain results on fuzzy admissible index matrices and fuzzy labelling matrices.

Theorem 4.4

The set, \(FL_{L(A)}(V^k,F^k)\), of fuzzy labellings matrices for fuzzy admissible index matrices of a fuzzy graph structure \(\tilde{G}=(\mu,\rho_1,\rho_2,\ldots,\rho_k)\) is a fuzzy algebra of the incidence algebra \(I(V^k,F^k)\).

Proof

Let \(\tilde{x}_1,\tilde{x}_2 \in FL_{L(A)}(V^k,F^k)\). Then \(x_1^i, x_2^i \in FL_{L(A)}(V^k,F^k)\), the collection of all fuzzy \(\rho_i\)-labellings, for \(i=1,2,\ldots,k\). So there exist \(\tilde{r}_1^i, \tilde{r}_2^i \in A_i\), the collection of all fuzzy admissible \(\rho_i\)-index vectors, for \(i=1,2,\ldots,k\).

Hence \(\tilde{x}_1^i, \tilde{x}_2^i\) are fuzzy \(\rho_i\)-labellings for \(\tilde{r}_1^i, \tilde{r}_2^i\) respectively for \(i=1,2,\ldots,k\). By theorem 3.4, the set of fuzzy \(\rho_i\)-labellings for fuzzy admissible \(\rho_i\)-index vectors is a fuzzy algebra of the incidence algebra \(I(V,F)\) for \(i=1,2,\ldots,k\). So \(x_1^i + x_2^i, x_1^i \cdot x_1^i, x_2^i \cdot x_2^i\) and \(\tilde{x}_1^i\) are fuzzy \(\rho_i\)-labellings for fuzzy \(\rho_i\)-index vectors \(\tilde{r}_1^i, \tilde{r}_2^i\) respectively for \(i=1,2,\ldots,k\). So \(\tilde{r}_1^i + \tilde{r}_2^i, \tilde{r}_1^i \cdot \tilde{r}_2^i\) and \(\tilde{r}_1^i\) are fuzzy admissible index matrices and \(x_1^i + x_2^i, x_1^i \cdot x_1^i, x_2^i \cdot x_2^i\) are fuzzy labelling matrices for \(\tilde{r}_1^i + \tilde{r}_2^i, \tilde{r}_1^i \cdot \tilde{r}_2^i\) and \(\tilde{r}_1^i\) respectively. Hence \(FL_{L(A)}(V^k,F^k)\) is a fuzzy algebra of the incidence algebra \(I(V^k,F^k)\).

Theorem 4.5

The set of fuzzy labellings \(FL_{L(0)}(V^k,F^k)\), for fuzzy index matrix 0 of a fuzzy graph structure \(\tilde{G}=(\mu,\rho_1,\rho_2,\ldots,\rho_k)\) is a fuzzy algebra of the incidence algebra \(I(V^k,F^k)\).

Proof

Let \(\tilde{x}_1, \tilde{x}_2 \in FL_{L(0)}(V^k,F^k)\). Then \(x_1^i, x_1^i \in FL_{L(0)}(V^k,F^k)\), the collection of all fuzzy \(\rho_i\)-labellings for 0, for \(i=1,2,\ldots,k\).
By theorem 3.5, the set of fuzzy ρ_i-labellings for fuzzy ρ_i index vector $\bar{0}$ is a fuzzy algebra of the incidence algebra $I(V,F)$ for $i=1,2,...,k$. So $x_1^i + x_2^i$, x_1^i, x_2^i and \bar{f}_1^i are fuzzy ρ_i-labellings for fuzzy ρ_i-index vectors $\bar{0} + \bar{0}$, $\bar{0}$, $\bar{0}$ respectively for $i=1,2,...,k$. So x_1^i, x_2^i are fuzzy labelling matrices for $\bar{0}$. Hence $F_{I(0)}(V^k, F^k)$ is a fuzzy algebra of the incidence algebra $I(V^k, F^k)$.

Theorem 4.6

The set of fuzzy labellings $F_{I(\Lambda)}(V^k, F^k)$ for fuzzy index matrix Λ of a fuzzy graph structure $\bar{G} = (\mu, \rho_1, \rho_2, ..., \rho_k)$ is a fuzzy algebra of the incidence algebra $I(V^k, F^k)$.

Proof

Let $\bar{x}_1^i, \bar{x}_2^i \in F_{I(\Lambda)}(V^k, F^k)$. Then $x_1^i, x_2^i \in F_{I(\Lambda)}(V^k, F^k)$, the collection of all fuzzy ρ_i-labelings for λ_i, for $i=1,2,...,k$.

By theorem 3.6, the set of fuzzy ρ_i-labellings for fuzzy ρ_i-index vectors λ_i, is a fuzzy algebra of the incidence algebra $I_{\rho_i}(V, F)$ for $i=1,2,...,k$. So $x_1^i + x_2^i$, x_1^i, x_2^i and \bar{f}_1^i are fuzzy ρ_i-labellings for fuzzy ρ_i-index vectors $\lambda^i_1 + \lambda^i_2$, λ^i_1, λ^i_2 and \bar{f}_1^i, respectively for $i=1,2,...,k$. So x_1^i, x_2^i are fuzzy labelling matrices for Λ. Hence $F_{I(\Lambda)}(V^k, F^k)$ is a fuzzy algebra of the incidence algebra $I(V^k, F^k)$.

References