SIX MAPS WITH A COMMON FIXED POINT IN COMPLEX VALUED METRIC SPACES

RAHUL TIWARI¹ AND D.P. SHUKLA²

¹Department of Mathematical Sciences, A.P.S. University Rewa, 486001, India
²Department of Mathematics, Govt. P.G. Science College, Rewa, 486001, India

Abstract

Recently, Sandeep Bhatt et.al [12] proved common fixed theorem for four self maps satisfying some contraction principles on a complex valued metric spaces. In this manuscript we obtain a common fixed point theorem for six maps in complex valued metric spaces having commuting and weakly compatible. Our theorem generalizes and extends the result of S. Bhatt et.al[12].

Mathematics Subject Classification : 47H10, 54H25

Keywords : weakly compatible maps, fixed points, common fixed points, complex valued metric spaces.

1. Introduction

A large variety of the problems of analysis and applied mathematics reduce to finding solutions of non linear functional equations which can be formulated in terms of finding the fixed points of a non-linear mapping. Fixed point theorems are very important tools for proving the existence and uniqueness of the solutions to various mathematical models (differential, integral and partial differential equations and variational inequalities etc.) representing phenomena arising in different fields, such as steady state temperature distribution, chemical equations, neutron transport theory, economic theories, financial analysis, epidemics, biomedical research and flow of fluids. They are also used to study the problems of optimal control related to these systems[4].

The study of metric spaces expressed the most important role to many fields both in pure and applied science such as biology, medicine, physics and computer science (see [14, 3]). Many authors generalized and extended the notion of a metric spaces such as vector-valued metric spaces of Perov [2], a G-metric spaces of Mustafa and Sims [16], a cone metric spaces of Huang and Zhang [10], a modular metric spaces of Chistyakov [15], and etc.
A. Azam, B. Fisher and M. Khan [1] first introduced the complex valued metric spaces which is more general than well-know metric spaces and also gave common fixed point theorems for maps satisfying generalized contraction condition.

2. Preliminaries
Let \(\mathbb{C} \) be the set of complex numbers. For \(z_1, z_2 \in \mathbb{C} \), define partial order \(\preceq \) on \(\mathbb{C} \) by
\[
z_1 \preceq z_2 \text{ if and only if } \text{Re}(z_1) \leq \text{Re}(z_2) \text{ and } \text{Im}(z_1) \leq \text{Im}(z_2).
\]
That is \(z_1 \preceq z_2 \) if one of the following conditions holds
(i) \(\text{Re}(z_1) = \text{Re}(z_2) \) and \(\text{Im}(z_1) = \text{Im}(z_2) \);
(ii) \(\text{Re}(z_1) < \text{Re}(z_2) \) and \(\text{Im}(z_1) = \text{Im}(z_2) \);
(iii) \(\text{Re}(z_1) = \text{Re}(z_2) \) and \(\text{Im}(z_1) < \text{Im}(z_2) \);
(iv) \(\text{Re}(z_1) < \text{Re}(z_2) \) and \(\text{Im}(z_1) < \text{Im}(z_2) \);
In particular, we will write \(z_1 \preceq z_2 \) if \(z_1 \neq z_2 \) and one of (ii), (iii) and (iv) is satisfied and we will write \(z_1 < z_2 \).

Definition 2.1[1] Let \(X \) be a non-empty set and \(d : X \times X \to \mathbb{C} \) be a map, then \(d \) is said to be complex valued metric if
(i) \(0 \preceq d(x, y) \), for all \(x, y \in X \) and \(d(x, y) = 0 \) if and only if \(x = y \);
(ii) \(d(x, y) = d(y, x) \) for all \(x, y \in X \);
(iii) \(d(x, y) \preceq d(x, z) + d(z, y) \), for all \(x, y, z \in X \).
Pair \((X, d) \) is called a complex valued metric space.

Example 2.2 Define a map \(d : \mathbb{C} \times \mathbb{C} \to \mathbb{C} \) by \(d(z_1, z_2) = e^{ip|z_1 - z_2|} \) where \(p \in \mathbb{R} \). Then \((\mathbb{C}, d) \) is a complex valued metric space.

Definition 2.3[1] Let \((X, d) \) be a complex valued metric space then
(i) Any point \(x \) in \(X \) is said to be an interior point of \(A \subseteq X \) if there exists \(0 < r \in \mathbb{C} \) such that \(B(x, r) = \{ y \in X \mid d(x, y) < r \} \subseteq A \).
(ii) Any point \(x \) in \(X \) is said to be a limit point of \(A \) if for every \(0 < r \in \mathbb{C} \), we have \(B(x, r) \cap (A - X) \neq \emptyset \).
(iii) Any subset \(A \) of \(X \) is said to be an open if each element of \(A \) is an interior point of \(A \).
(iv) Any subset \(A \) of \(X \) is said to be a closed if each limit point of \(A \) belongs to \(A \).
(v) A sub-basis for a Hausdorff topology \(\tau \) on \(X \) is a family given by
\[
F = \{ B(x, r) \mid x \in X \text{ and } 0 < r \}.
\]

Definition 2.4[1] Let \(\{x_n\} \) be a sequence in complex valued metric space \((X, d) \) and \(x \in X \)
Then
(i) It is said to be a convergent sequence, \(\{x_n\} \) converges to \(x \) and \(x \) is the limit point of \(\{x_n\} \), if for every \(c \in \mathbb{C} \), with \(0 < c \) there is a natural number \(N \) such that \(d(x_n, x) < c \), for all \(n > N \). We denote it by \(\lim_{n \to \infty} x_n = x \)
(ii) It is said to be a Cauchy sequence, if for every \(c \in \mathbb{C} \), with \(0 < c \) there is a natural number \(N \) such that \(d(x_n, x_{m}) < c \), for all \(n > N \) and \(m \in \mathbb{N} \).
(iii) \((X, d) \) is said to be complete complex valued metric space if every Cauchy sequence in \(X \) is convergent.
Lemma 2.5 [1] Any sequence \(\{x_n\} \) in complex valued metric space \((X, d)\), converges to \(x \) if and only if
\[|d(x_n, x)| \rightarrow 0 \text{ as } n \rightarrow \infty. \]

Lemma 2.6 [1] Any sequence \(\{x_n\} \) in complex valued metric space \((X, d)\) is a Cauchy sequence if and only if
\[|d(x_n, x_{n+m})| \rightarrow 0 \text{ as } n \rightarrow \infty, \quad \text{where } m \in \mathbb{N}. \]

Definition 2.7 Let \(S \) and \(T \) be self maps of a non-empty set \(X \). Then
(i) Any point \(x \in X \) is said to be fixed point of \(T \) if \(Tx = x \).
(ii) Any point \(x \in X \) is said to be a coincidence point of \(S \) and \(T \) if \(Sx = Tx \) and we shall called \(w = Sx = Tx \) that a point of coincidence of \(S \) and \(T \).
(iii) Any point \(x \in X \) is said to be a common fixed point of \(S \) and \(T \) if \(Sx = Tx = x \)

Definition 2.8 [5] Two self maps \(S, T \) of a non-empty set \(X \) are commuting if
\[TSx = STx, \quad \text{for all } x \in X. \]

Definition 2.9 [13] Let \(S, T \) be self maps of metric space \((X, d)\), then \(S, T \) are said to be weakly commuting if
\[d(STx, TSx) \leq d(Sx, Tx), \quad \text{for all } x \in X. \]

Definition 2.10 [6] Let \(S, T \) be self maps of metric space \((X, d)\), then \(S, T \) are said to be compatible if
\[\lim_{n \to \infty} d(STx, TSx_n) = 0 \]
whenever \(\{x_n\} \) is a sequence in \(X \) such that \(\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = z \),
for some \(z \in X \).

Remark 2.11 In general, commuting maps are weakly commuting and weakly commuting maps are compatible, but the converses are not necessarily true and some examples can be found in [5-7, 9]

Definition 2.12 [8] Two self maps \(S, T \) of a non-empty set \(X \) are said to be weakly compatible if
\[STx = TSx \text{ whenever } Sx = Tx. \]

Lemma 2.13 [11] Let \(T: X \to X \) be a map, then there exists a subset \(E \) of \(X \) such that \(T(E) = T(X) \) and \(T: E \to X \) is one to one.

3. Main Result

Theorem 3.1 Let \((X, d)\) be a complex valued metric space and \(F, G, I, J, K, L \) be self maps of \(X \) satisfying the following conditions
\[KL(X) \subseteq F(X) \text{ and } IJ(X) \subseteq G(X) \] \hspace{1cm} (3.1)
\[d(IJx, KLy) \leq ad(Fx, Gy) + b(d(Fx, IJx) + d(Gy, KLy)) + c(d(Fx, KLy) + d(Gy, IJx)) \] \hspace{1cm} (3.2)
for all \(x, y \in X \), where \(a, b, c \geq 0 \) and \(a+2b+2c < 1 \).
Assume that pairs (KL, G) and (IJ, F) are weakly compatible. Pairs (K, L), (K, G), (L, G), (I, J), (I, F) and (J, F) are commuting pairs of maps. Then K, L, I, J, G and F have a unique common fixed point in X.

Proof

Pick \(x_0 \in X \). By (3.1), we can define inductively a sequence \(\{y_n\} \) in X such that

\[
y_{2n} = IJx_{2n} = Gx_{2n+1} \quad \text{and} \quad y_{2n+1} = KLx_{2n+1} = Fx_{2n+2} \tag{3.3}
\]

for all \(n = 1, 2, 3, \ldots \)

By (3.2), we have

\[
d(y_{2n}, y_{2n+1}) = d(IJx_{2n}, KLx_{2n+1})
\]

\[
\leq a \left(d(Fx_{2n}, Gx_{2n+1}) + b(d(Fx_{2n}, IJx_{2n}) + d(Gx_{2n+1}, KLx_{2n+1})) \right) + c(d(Fx_{2n}, KLx_{2n+1}) + d(Gx_{2n+1}, IJx_{2n}))
\]

\[
= a \left(d(y_{2n-1}, y_{2n}) + b(d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n+1})) \right) + c(d(y_{2n-1}, y_{2n+1}) + d(y_{2n}, y_{2n}))
\]

\[
\leq (a+b+c) d(y_{2n-1}, y_{2n}) + (b+c) d(y_{2n}, y_{2n+1})
\]

which implies that

\[
d(y_{2n}, y_{2n+1}) \leq \frac{a+b+c}{1-b-c} d(y_{2n-1}, y_{2n}) = k d(y_{2n-1}, y_{2n})
\]

where \(k = \frac{a+b+c}{1-b-c} < 1 \). Similarly we obtain

\[
d(y_{2n+1}, y_{2n+2}) \leq k d(y_{2n}, y_{2n+1})
\]

Therefore,

\[
d(y_{n+1}, y_{n+2}) \leq k d(y_n, y_{n+1}) \leq \ldots \leq k^{n+1} d(y_0, y_1)
\]

for \(n = 1, 2, 3, \ldots \)

Now, for all \(m>n \),

\[
d(y_n, y_m) \leq d(y_n, y_{n+1}) + d(y_{n+1}, y_{n+2}) + \ldots + d(y_{m-1}, y_m)
\]

\[
\leq (k^n + k^{n+1} + \ldots + k^{m-1}) d(y_1, y_0)
\]

\[
\leq \frac{k^n}{1-k} d(y_1, y_0)
\]

\[
\Rightarrow d(y_n, y_m) \leq \frac{k^n}{1-k} |d(y_1, y_0)|
\]

which implies that \(d(y_n, y_m) \to 0 \) as \(n, m \to \infty \). Hence \(\{y_n\} \) is a Cauchy sequence.

Since X is complete, there exists a point \(z \) in X such that

\[
\lim_{n \to \infty} IJx_{2n} = \lim_{n \to \infty} Gx_{2n+1} = \lim_{n \to \infty} KLx_{2n+1} = \lim_{n \to \infty} Fx_{2n+2} = z
\]

Since KL(X) \(\subseteq F(X) \), there exists a point \(u \in X \) such that \(z = Fu \).

Then by (3.2), we have

\[
d(IJu, z) \leq d(IJu, KLx_{2n+1}) + d(KLx_{2n+1}, z)
\]

\[
\leq a \left(d(Fu, Gx_{2n+1}) + b(d(Fu, IJu) + d(Gx_{2n+1}, KLx_{2n+1})) \right) + c(d(Fu, KLx_{2n+1}) + d(Gx_{2n+1}, IJu) + d(KLx_{2n+1}, z))
\]

Taking the limit as \(n \to \infty \), we obtain

\[
d(IJu, z) \leq a (d(z, z) + b(d(z, IJu) + d(z, z))
\]

\[
+ c(d(z, z) + d(z, IJu) + d(z, z))
\]

\[
= (b+c) d(IJu, z), \text{ a contradiction}
\]
Since $a+2b+2c < 1$. Therefore $IJu = Fu = z$. Since $IJ(X) \subseteq G(X)$, there exists a point v in X such that $z = Gv$. Then by (3.2), we have
\[
d(z, KLv) = d(IJu, KLv)
\leq a d(Fu, Gv) + b(d(Fu, IJu) + d(Gv, KLv))
+ c(d(Fu, KLv) + d(Gv, IJu))
= a d(z, z) + b(d(z, z) + d(z, KLv))
+ c(d(z, KLv) + d(z, z))
= (b+c) d(z, KLv),
\]
which is a contradiction.

Therefore $KLv = Gv = z$ and so $IJu = Fu = KLv = Gv = z$.

Since F and IJ are weakly compatible maps, $IJFu = FIJu$ and so $IJz = Fz$. Now we claim that z is a fixed point of IJ if $IJz \neq z$, from (3.2), we have
\[
d(IJz, z) = d(IJz, KLv)
\leq a d(Fz, Gv) + b(d(Fz, IJz)+d(Gv, KLv))
+ c(d(Fz, KLv)+d(Gv, IJz))
= a d(IJz, z) + b(d(IJz, IJz)+d(z, z) + c(d(IJz, z)+d(z, IJz))
= (a+2c) d(IJz, z),
\]
a contradiction.

Therefore $IJz = z$. Hence $IJz = Fz = z$.

Similarly, G and KL are weakly compatible maps, we have $KLz = Gz$.

Now we claim that z is a fixed point of KL. If $KLz \neq z$, then by (3.2), we have
\[
d(z, KLz) = d(IJz, KLz)
\leq a d(Fz, Gv) + b(d(Fz, IJz)+d(Gv, KLz))
+ c(d(Fz, KLz)+d(Gv, IJz))
= a d(z, KLz) + b(d(z, z) + d(KLz, KLz)) + c(d(z, KLz)+d(KLz, z))
= (a+2c) d(z, KLz),
\]
a contradiction.

Therefore $KLz = z$. Hence $KLz = Gz = z$. We have therefore proved that $IJz = KLz = Fz = Gz = z$. So z is common fixed point of F, G, IJ and KL.

By commuting conditions of pairs we have
\[
Kz = K(KLz) = K(LKz) = KL(Kz).
Kz = K(Fz) = F(Kz) and Lz = L(KLz) = (LK)(Lz) = (KL)(Lz),
Lz = L(Fz) = F(Lz), which shows that Kz and Lz are common fixed points of (KL, F).

Then $Kz = z = Lz = Fz = KLz$.

Similarly $Lz = z = IJz = Gz = IJz$.

Therefore z is a common fixed point of K, L, I, J, F and G.

For uniqueness of z, let w be another common fixed point of K, L, I, J, F and G.

Then by (3.2), we have
\[
d(z, w) = d(IJz, KLw)
\leq a d(Fz, Gw) + b(d(Fz, IJz)+d(Gw, KLw)) + c(d(Fz, KLw)+d(Gw, IJz))
= a d(z, w) + b(d(z, z) + d(w, w) + c(d(z, w) + d(w, z))
= (a+2c) d(z, w),
\]
a contradiction.

So $z = w$.

831
References

