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Abstract

In the present paper, we have introduced the concept of bicomplex
mobius maps with its idempotent decomposition. We have also discussed
the fixed points and Lipschitz condition for bicomplex mobius maps.
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1 Preliminaries

As in [13] (see also [5] and [6]), the algebra of bicomplex numbers

T := {z1 + z2i2 | z1, z2 ∈ C(i1)} (1.1)

is the space isomorphic to R4 via the map

z1 + z2i2 = x0 + x1i1 + x2i2 + x3j→ (x0, x1, x2, x3) ∈ R4,
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and the multiplication is defined using the following rules:

i1
2 = i2

2 = −1, i1i2 = i2i1 = j so that j2 = 1.

Note that we define C(ik) := {x + yik | i2k = −1 and x, y ∈ R} for k = 1, 2.
Hence, it is easy to see that the multiplication of two bicomplex numbers is
commutative. In fact, the bicomplex numbers

T ∼= ClC(1, 0) ∼= ClC(0, 1)

are unique among the complex Clifford algebras (see [4, 8] and [15]) in that
they are commutative but not division algebra. Also, since the map z1 +z2i2 →
(z1, z2) gives a natural isomorphism between the C-vector spaces T and C2, we
have T = C⊗R C. That is, we can view the algebra T as the complexified C(i1)
exactly the way C is complexified R. In particular, in the equation (1.1), if we
put z1 = x and z2 = yi1 with x, y ∈ R, then we obtain the following subalgebra
of hyperbolic numbers, also called duplex numbers (see, e.g. [13], [18]):

D := {x+ yj | j2 = 1, x, y ∈ R} ∼= ClR(0, 1).

The two projection maps P1,P2 : T −→ C(i1) defined by

P1(z1 + z2i2) = z1 − z2i1 and P2(z1 + z2i2) = z1 + z2i1, (1.2)

are used extensively in the sequel.

The complex (square) norm CN(w) of the bicomplex number w is the com-
plex number z1

2 + z2
2; writing w∗ = z1 − z2i2, we see that CN(w) = ww∗.

Then a bicomplex number w = z1 + z2i2 is invertible if and only if CN(w) 6= 0.
Precisely,

w−1 =
w∗

CN(w)
. (1.3)

The set of units in the algebra T forms a multiplicative group which we shall
denote by T∗ (see [2]). Unlike the algebra C, the bicomplex algebra T has zero
divisors given by

NC = {w ∈ T : CN(w) = 0} = {z(1± j)| z ∈ C(i1)}, (1.4)

which we may call the null-cone. Note that, using orthogonal idempotents

e1 =
1 + j

2
, e2 =

1− j

2
, in NC,

each bicomplex number w = z1 + z2i2 ∈ T can be expressed uniquely as

w = P1(w)e1 + P2(w)e2, (1.5)

where P1 and P2 are projection maps defined in (1.2). This representation of T
as C⊕ C helps to do addition, multiplication and division term-by-term. With
this representation we can directly express |w|j as

|w|j := |P1(w)|e1 + |P2(w)|e2

and will be referred to as the j-modulus of w = z1 + z2i2 ∈ T (see [13]).
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Definition 1 Let X1 and X2 be subsets of C(i1). Then the following set

X1 ×e X2 := {w = z1 + z2i2 ∈ T : P1(w) ∈ X1 and P2(w) ∈ X2}

is called a T-cartesian set determined by X1 and X2, where P1 and P2 are
projections as defined in Eqn.(1.2).

It is easy to see that if X1 and X2 are domains (open and connected) of C(i1)
then X1 ×e X2 is also a domain of T. We define the “discus” with center
a = a1 + a2i2 of radius r1 and r2 of T as follows [9]:

D(a; r1, r2) = B1(a1 − a2i1, r1)×e B
1(a1 + a2i1, r2)

= {w1e1 + w2e2 : |w1 − (a1 − a2i1)| < r1, |w2 − (a1 + a2i1)| < r2},

where Bn(z, r) is an open ball with center z ∈ Cn(i1) and radius r > 0. In
the particular case where r = r1 = r2, D(a; r, r) will be called the T-disc with
center a and radius r. In particular, we define

D(a; r1, r2) := B1(a1 − a2i1, r1)×e B1(a1 + a2i1, r2) ⊂ D(a; r1, r2).

We remark that D(0; r, r) is, in fact, the Lie Ball (see [1]) of radius r in T.

Further, the projections as defined in Eqn.(1.2), help to understand bicom-
plex holomorphic functions in terms of the following Ringleb’s Decomposition
Lemma [10].

Theorem 1 Let Ω ⊂ T be an open set. A function f : Ω −→ T is T-
holomorphic on Ω if and only if the two natural functions fe1 : P1(Ω) −→ C(i1)
and fe2 : P2(Ω) −→ C(i1) are holomorphic, and

f(w) = fe1(P1(w))e1 + fe2(P2(w))e2, ∀ w = z1 + z2i2 ∈ Ω,

The Ringleb’s Lemma for bicomplex meromorphic functions is as follows [5].

Theorem 2 Let Ω ⊂ T be an open set. A function f : Ω −→ T is bicomplex
meromorphic on Ω if and only if the two natural functions fe1 : P1(Ω) −→ C(i1)
and fe2 : P2(Ω) −→ C(i1) are meromorphic, and

f(w) = fe1(P1(w))e1 + fe2(P2(w))e2, ∀ w = z1 + z2i2 ∈ Ω.

Definition 2 Let f : Ω −→ T be a bicomplex meromorphic function on the
open set Ω ⊂ T, and let fe1 : P1(Ω) −→ C(i1) and fe2 : P2(Ω) −→ C(i1) be
the natural maps. Then we say that w = P1(w)e1 + P2(w)e2 ∈ Ω is a (strong)
pole for the bicomplex meromorphic function

f(w) = fe1P1(w)e1 + fe1P2(w)e2

if P1(w) (and) or P2(w) is a pole for fe1 or fe2, respectively.
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Remark 1 Poles of bicomplex meromorphic functions are not isolated singu-
larities.

It is also easy to obtain the following characterization of poles.

Proposition 1 Let f : X −→ T be a bicomplex meromorphic function on the
open set Ω ⊂ T. If w0 ∈ Ω then w0 is a pole of f if and only if

lim
w→w0

|f(w)| =∞.

2 The Extended Bicomplex Plane T

Since the range of bicomplex meromorphic function lies beyond the bicomplex
plane, we need the extended bicomplex plane to study the bicomplex mero-
morphic functions. Further, it would help to study the limit points of unbounded
sets in bicomplex plane. We obtain this extended bicomplex plane by using ex-
tended C(i1)-plane.

For, we may consider the set

C(i1)×e C(i1) = (C(i1) ∪ {∞})×e (C(i1) ∪ {∞})
= (C(i1)×e C(i1)) ∪ (C(i1)×e {∞}) ∪ ({∞} ×e C(i1)) ∪ {∞}
= T ∪ I∞,

writing I∞ for the set (C(i1)×e {∞}) ∪ ({∞} ×e C(i1)) ∪ {∞}. Clearly, any
unbounded sequence in T will have a limit point in I∞.

Definition 3 The set T = C(i1) ×e C(i1) is called the extended bicomplex
plane. That is,

T = T ∪ I∞, with I∞ = {w ∈ T : ‖w‖ =∞}.

It is of significant importance to observe that formation of the extended
bicomplex plane T requires us to add an infinity set viz. I∞, which we may call
the bicomplex infinity set.

We need some definitions in order to give a characterization of this set.

Definition 4 An element w ∈ I∞ is said to be a P1-infinity (P2-infinity) ele-
ment if P1(w) =∞ (P2(w) =∞) and P2(w) 6=∞ (P1(w) 6=∞).

Definition 5 The set of all P1-infinity elements is called I1-infinity set. It is
denoted by I1,∞. Therefore,

I1,∞ = {w ∈ T : P1(w) =∞, P2(w) 6=∞}.
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Similarly we can define the I2-infinity set as:

I2,∞ = {w ∈ T : P1(w) 6=∞, P2(w) =∞}.

We now construct the following two new sets:

I−∞ = I1,∞ ∪ I2,∞, I−0 = I1,0 ∪ I2,0, (2.1)

so that I∞ = I−∞ ∪ {∞} and NC = I−0 ∪ {0}.

With these definitions, each element in the null-cone has an inverse in I∞
and vice versa. One can easily check that the elements of the set I−∞ do not
satisfy all the properties as satisfied by the C(i1)-infinity but the element ∞ =
∞e1 +∞e2 does. We may call the set I−∞, the weak bicomplex infinity set
and the element ∞ = ∞e1 +∞e2, the strong infinity. This nature of the
set I∞ generates the idea of weak and strong poles for bicomplex meromorphic
functions (see [6]). Now, in order to work in the extended bicomplex plane, it is
desirable to have a geometric model wherein the elements of T have a concrete
representative so as to treat the points of I∞ as good as any other point of T.
To obtain such a model, one can use the usual stereographic projections of C(i1)
as two components in the idempotant decomposition to get a one-to-one and
onto correspondence between the points of S × S, where S is the unit sphere
in R3, and T. Hence, we can visualize the extended bicomplex plane directly in
R6 = R3 × R3. With this representation, we call T the bicomplex Riemann
sphere.

Observe that what is done above is basically a compactification of C2, using
bicomplex setting. That is, suitable points at infinity are added to T to get
the extended bicomplex plane T. In higher dimensions such compactifications
are well known under the name, conformal compactifications. In fact, such
compactifications are obtained as homogeneous spaces of Lie groups (see [2]
and [3]).

2.1 The Chordal Metric on T

Proposition 2 If χ : C(i1)×C(i1) −→ R be the chordal metric on C(i1). Then
the mapping χe : T× T −→ R defined as:

χe (z, w) =

√
χ2(P1(z),P1(w)) + χ2(P2(z),P2(w))

2
(2.2)

is a metric on T.

We call this metric χe on T the bicomplex chordal metric. The virtue
of the bicomplex chordal metric is that it allows w ∈ I∞ to be treated like any
other point. Hence, we are able now to analyse the behavior of the bicomplex
meromorphic functions in the extended bicomplex plane, especially on the set
I∞.
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Remark 2 As for the j−modulus, let us define

χj(z, w) := χ(P1(z),P1(w))e1 + χ(P2(z),P2(w))e2 (2.3)

in the extended hyperbolic numbers. Then

Re(χj
2(z, w)) = χe

2(z, w)

and thus we have

χe(z, w) =
√

Re(χj
2(z, w)) (2.4)

where

χj(z, w) =
|z − w|j√

1 + |z|j
√

1 + |w|j
if z, w ∈ T. (2.5)

Some of the important properties of the bicomplex chordal metric are discussed
in the following results.

Theorem 3 If z = z1e1 + z2e2 and w = w1e1 + w2e2 are any two elements
in the extended bicomplex plane and χe is the bicomplex chordal metric on T.
Then,

1. χe(z, w) ≤ 1;

2. χe(0,∞) = 1 which shows that 0 and ∞ are the farthest points on S×S;

3. χe(z, w) = 1√
2
χ(z1,∞) if P2(z) = P2(w) = 0 and P1(w) =∞;

4. χe(z, w) = 1√
2
χ(z1, w1) if P2(z) = P2(w) =∞;

5. χe(z,∞) = 1√
2
χ(z2,∞) if P1(z) =∞;

6. χe(z, w) = χe(z
−1, w−1);

7. χe(z, w) = χ(z, w) if z, w ∈ C(i1);

8. χe(z, w) ≤ ‖z − w‖ if z, w ∈ T;

9. χe(z, w) is a continuous function on T.

The notion of continuity with respect to the bicomplex chordal metric is
given in the following definition.
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Definition 6 A function f is bispherically continuous at a point w0 ∈ T if,
given ε > 0, there exists δ > 0 such that

χe(f(w), f(w0)) < ε,

whenever ‖w − w0‖ < δ.

In the case of bicomplex meromorphic functions we have the following
result.

Theorem 4 If f(w) is a bicomplex meromorphic function in a domain E ⊂ T,
then f is bispherically continuous in E.

Remark 3 Since

χe (f(w), f(w0)) ≤ ‖f(w)− f(w0)‖ ,

we see that equicontinuity with respect of the euclidean metric implies bispherical
equicontinuity.

3 Bicomplex Mobius Maps

Definition 7 The bicomplex mobius maps are the bicomplex rational functions
of the form

T(w) =
aw + b

cw + d
, a, b, c, d ∈ T, ad− bc /∈ NC.

We can represent every bicomplex mobius map in the idempotent form as
follws:

T(w) =
aw + b

cw + d
= Te1(w1) + Te2(w2) (3.1)

Where w = w1e1 + w2e2 and Tei
(wi) = aiwi+bi

ciwi+di
for i = 1, 2. Thus

P1(T(w)) = Te1(w1) and P2(T(w)) = Te1(w2)

On the basis of above definition we have the following theorem

Theorem 5 T(w) is the bicomplex mobius map if and only if P1(T(w)) and
P2(T(w)) are the mobius maps in C(i1).

This theorem facilitates to understand the structure of bicomplex mobius maps.
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4 Analiticity of bicomplex mobius maps

It is interesting to know that the bicomplex mobius map T(w) = aw+b
cw+d is dif-

ferentiable for all w ∈ T except for the case when cw + d /∈ NC and we have

T
′
(w) =

ad− bc
(cw + d)

2 , cw + d /∈ NC

Therefore the bicomplex mobius map T(w) is bicomplex holomorphic on T\{w :
cw + d ∈ NC}

5 Fixed points of a bicomplex mobius maps

Definition 8 A point w0 is siad to be a fixed point of the mobius map T(w) if
T(w0) = w0

Example 1 The bicomplex mobius map T(w) = w − 1 has no fixed point in
I−∞ ⊃ T where as it has only one fixed point namely ∞

Theorem 6 If w is the fixed point of the mobius map T(w) then Pi(w) is the
fixed point of Pi(T(w)) for i = 1, 2

Now we discuss the fixed points of bicomplex Mobius maps
We consider the map T : T→ T as

T(w) =
aw + b

cw + d

such that T(w) 6= w identically Then fixed points of bicomplex mobius maps
can be determined by using 3.1.
If c = 0 then,

Tei
(wi) =

aiwi + bi
di

have two fixed points namely ∞ and bi
di−ai

for i = 1, 2. So T have one fixed

points in T and four fixed points in T.
Now if c 6= 0, we have three cases:
(1). c 6= 0 such that P1(c) = 0 and P2(c) 6= 0. Then Te1(w1) has two fixed
points namely∞ and b1

d1−a1
and Te2(w2) has atmost two finite fixed points. So

T has atmost two fixed points in T and atmost four fixed points in T.

(2). c 6= 0 such that P1(c) 6= 0 and P2(c) = 0. This case is similar as in case
(1).
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(3) c 6= 0 such that P1(c) 6= 0 and P1(c) 6= 0. Then
Tei

(wi) has atmost two finite fixed points for i = 1, 2. So T has atmost four
finite fixed points in T and no fixed point in I∞

Now we have the following theorems

Theorem 7 The bicomplex mobius maps T(w) = aw+b
cw+d has atmost four fixed

points in T if c /∈ NC

Theorem 8 The bicomplex mobius maps T(w) = aw+b
cw+d has no fixed points in

I∞ if c /∈ NC

Theorem 9 Any bicomplex mobius maps T(w) = aw+b
cw+d has atmost four fixed

points in T

Theorem 10 The bicomplex mobius maps of the form T(w) = aw+b
d has one

fixed point in T and three fixed points in I∞.

Theorem 11 Every bicomplex mobius maps which has three fixed points such
that the difference of any two points does not belong to the Null cone is the
identity map.

6 Bicomplex mobius maps satisfy Lipschitz con-
dition

Theorem 12 Each bicomplex mobius map is a Lipschitz map w.r.t bicomplex
chordal metric

Proof: We consider the bicomplex mobius map

T(w) =
aw + b

cw + d

Since the mobius maps in C(i1) satisfy the lipschitz condition, so Te1(w1) and
Te2(w2) both satisfy the lipschitz condition and let g1 and g2 be their lipschitz
constants respectivily.

χe (T(w),T(u)) =

√
χ2(Te1(w1),Te1(u1)) + χ2(Te2(w2),Te2(u2)

2

≤

√
‖g1‖4χ2(w1, u1) + ‖g2‖4χ2(w2, u2)

2
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≤ ‖g‖2
√
χ2(w1, u1) + χ2(w2, u2)

2

= ‖g‖2χe (w, u)

Where ‖g‖ = max{‖g1‖ , ‖g2‖}. Thus bicomplex mobius map is a Lipschitz map
w.r.t bicomplex chordal metric.

This result opens the scope for further study of bicomplex mobius maps.
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