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Abstract

In this paper, exponential transmuted Frechet distribution is considered for Bayesian
analysis. The expressions for Bayes estimators of the parameter have been derived under
squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by using
guasi and gamma priors.
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1. Introduction

The exponential transmuted Frechet distribution was proposed by Pillai and Moolath [1]. They
obtained some of its statistical properties. The probability density function of exponential
transmuted Frechet distribution is given by

0-1
f (x;0)=ac*ox Ve () (1+ A—2267 )[1—e(°/ ) (1+ /1(1—e(c/ ) ))} x>0, (1)

The joint density function or likelihood function of (1) is given by

f(x:60)=(ac’0)’ (H x; (=g (%) (1+ A—2287 ) )]
i=1

exp {(9—1)anlog [1—e<c/xi>a (1+/1(1—e<c/xif‘ ))ﬂ . )

i=1

The log likelihood function is given by
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log f (x;0)=nlog (ac*0)+log [H x; (@Y’ (1+z—2,1e‘(°/*i>a )j

+(9i_i1) Z log [1— g (e’ (1+ A (1— g (/1) ))} . 3)

Differentiating (3) with respect to 6 and equating to zero, we get the maximum likelihood
estimator of 6 which is given as

0- n[ i; log [1—e‘(°/Xi f (1+ A(l—e‘“/x‘ f ))T}l (4)

2. Bayesian Method of Estimation

The Bayesian inference procedures have been developed generally under squared error loss
function

2
L(é’,@) = (9— 9) . ()
The Bayes estimator under the above loss function, say, és is the posterior mean, i.e,

0s =E(0). (6)

Zellner [2], Basu and Ebrahimi [3] have recognized that the inappropriateness of using
symmetric loss function. Norstrom [4] introduced precautionary loss function is given as

) (9—9]
L(H,Hj:f. @)

%

The Bayes estimator under this loss function is denoted by g?p and is obtained as
n %

0 = E(¢0°)]". 8

Calabria and Pulcini [5] points out that a useful asymmetric loss function is the entropy loss
L(5)e[8° —p log,(5)-1]

where ¢ =—,and whose minimum occurs at éz 0. Also, the loss function L(5) has been used

D>

in Dey et al. [6] and Dey and Liu [7], in the original form having p=1. Thus L(&) can written
be as
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L(5)=b[5~log, (5)-1]; b>0. 9)

The Bayes estimator under entropy loss function is denoted by 55 and is obtained by solving the
following equation

ol

Wasan [8] proposed the K-loss function which is given as

) (é—ej
L(@,&j:A—. (11)
00

Under K-loss function the Bayes estimator of 6 is denoted by éK and is obtained as
N
0 [ E(9) T (12)
K= —7 7=~ -
E(Y0)

Al-Bayyati [9] introduced a new loss function which is given as

2
L(9,9j=9° [9—0) : (13)
Under Al-Bayyati’s loss function the Bayes estimator of 6 is denoted by 0 and is obtained as
R E 004—1
On = ( )
E(6°)

(14)

Let us consider two prior distributions of 0 to obtain the Bayes estimators.

(1) Quasi-prior: For the situation where we have no prior information about the parameter 0, we
may use the quasi density as given by

gl(e)zaid ;6>0,d >0, (15)

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior.
(it) Gamma prior: Generally, the gamma density is used as prior distribution of the parameter 0
given by

9,(0)= %e“e'/” 1 60>0. (16)
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3. Posterior Density under g, (0)

The posterior density of 6 under g, (&), on using (2), is given by

(ac*9)’ (H x; (g (/)" (1+ 4 — 26 %) )]
i=1
exp [(9 ~1)Ylog [1— e (1+ /1(1_ e/ ))ﬂ g
i=1 |
(ac*0) (H ;g ) (1+ A—22e ) )j
i=1

_ exp {(H -1) Zn: log [1— g (/)" (1+ A (1— g (/) ))ﬂ o°

i=1

f(6/x)=—¢

de

O ——y 8

n a a -1
ned ‘92'09[1—6“/*” {1%(1—5(0/*” m
0" e

-1

Tg”d e—aizn;‘log{l—e_(c/xi ? [1+/1[1—e‘<°/xi f m ”
0

n _\n-d+1
RPNy P, n a -
i (glog I:l e (1+/1(1 ¢ ))j| j o eHiZ;Iog{le'Wxi) [lJrﬂ[l—e‘(C/Xi) Jﬂ (17)

I'(n—d+1)

Theorem 1. On using (17), we have

—C

E(6°)= F(F”(;f ;:)1) (Z log [1_ (e (1+ /1(1—e(°/"‘ ? ))Tj . (18)

i=1
Proof. By definition,
E(0°)=[o°f (6/x)do

n—d+1

n a (/%) -1
) [;mg |:1_e(C/Xi) (1+ﬂ,(1—e (e/x) )):| ] ) - ﬁélog[ke’wxi)a[1+l[1fef(°/xi)ajﬂil

- 0 déo
F(n—d+1) ! °
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. _1\n-d+1
> log [1— g (/) (1+ /1(1—e‘<°/xi>a ))}
i1 C(n—d+c+1)
= F(n_d +1) ] ] . 1 n—-d+c+1
(Zlog[l—e‘(c/x‘) (1+/1(1—e‘(°/xi) ))} }
i=1
1) "
_In-d+c+ Zlog[l g (/)" (l+ﬁ(l e(c/x)))}
I'(n-d+1) (=
From equation (18), for c=1, we have
n -\t
E(6)=(n-d jtl)(ZIog[l—e‘(C/x‘)a (1+/1(1—e‘(°/xi)a))} J . (19)
i=1
From equation (18), for ¢ =2, we have
n -1 N
E(6*)=[(n—d+2)(n—d +1)]{ZIog [1_e—<c/Xi>a (]_-l—ﬂ,(l—e_(C/xi)a )ﬂ } , (20)
i=1

From equation (18), for c=-1, we have

E[%) - d)ZIog[l g (/)" (1+z(1 g ()" ))}l (21)

From equation (18), for c=c+1, we have

E(0°)= (n(n(:(:)z (Zlog[l g (o) (1+,1(1 g (%) ))TJ(M). (22)

i=1

4. Bayes Estimators under g, (6)

From equation (6), on using (19), the Bayes estimator of 6 under squared error loss function is
given by

0s =(n—d +1)[Zn:Iog {1_e—(c/xi>a (1+ z(l—e-“/xﬂa ))le (23)

i=1
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From equation (8), on using (20), the Bayes estimator of 6 under precautionary loss function is
obtained as

-1

ép = [(n —d+2)(n—-d +1)]% [ilog [1—6_(°/X‘)a (1+ ﬂb(l—e_(c/xi)a ))Jlj . (24)

From equation (10), on using (21), the Bayes estimator of 6 under entropy loss function is given
by

fe =(n—d )[Zn:|09 [1— g /) (1+ /1(1—e<°/xi>a ))T} : (25)

i=1

From equation (12), on using (19) and (21), the Bayes estimator of 6 under K-loss function is
given by

n AN
Ox :[(”—d“)(”—d)]{zlog [1—e‘(°/xi) (1+z(1—e‘<°/xi> )ﬂ J . (26)
i=1
From equation (14), on using (18) and (22), the Bayes estimator of 6 under Al-Bayyati’s loss

function comes out to be

-1

On =(n—d +c+1)[zn:|og [1_e<c/xi>a (1+ /1(1_e<°/xi>a ))T} . 27)

i=1

5. Posterior Density under g, (6)

Under g, (49) the posterior density of 8, using equation (2), is obtained as

(ac® )[Hx (a+2)g~(6/x)" (1+z—ue(°/*i>a)J

(0-1)31 1 (o)’ (1 1(1 /%) ))} BT parg-po

exp| ( Zog e’ + e r(a) |
( a+1 c/x (1+2 Zﬂe (c/x) )j

exp{(e 1 Zlog[l ()’ (1+2(1 (/%) )):|:|Ffa)9al _po

déo

Oy 8
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n a a -t
—[/ﬂZIog{l—e(W) (1+/1(1—e*(°/x” m ]a
0n+0{71 e i=1

ST I
0

grrat e[m%log {H—(c/xi N [l+ A(H_(W a DHH
I'(n+ a)/(ﬂ + Zn: log [1— e (/%) (1+ a (1_ e ))TJ

[ﬂ i Z 109 [1_ e (1+ 2 (1_ ()" ))T}“

— ! 0n+a—l
I'(n+a) ¢

nN+a

n a AN
[ﬂ+2log[1e(°/xi) [1+;{17e*(°/xi) m ]9
i=1

(28)

Theorem 2. On using (28), we have

r(n+a) =

E(6°)= F(m—wc)(m anlog [1—6‘(‘:/“)& (1+,1(1—e‘<°/Xi>a ))TJ . (29)

Proof. By definition,

E(0°)=[o°f (6/x)do

n . s _1\"ta )
(ﬁ " Z Iog l:l_ ei(C/Xi) (1+ A (1_ ¢ o )):| J © 0n+a+c71 e—[ﬁ+glog[l—e(°/ﬁ P [1+1(1—e*(0/xi 2 jﬂ ]g

- - I'(n+a) ~£

= [[ﬂ + Zi: log [1— o (e’ (1+ A (1— (o)’ ))ija/“(n . a)}
X [F(n +oa+ C)/[ﬂ + i log [1— g (%) (1+ A (1— g=(c/)’ ))}l]ﬂmcj

= % Lﬂ + Zn: log [1— g ()" (1+ yl (1_ e (&%)’ ))TT .

i=1

de
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From equation (29), for c=1, we have

E(0)=(n+ a){ﬂ + Zn: log [1— e (1+ /1(1_@<°/Xi)a ))T]_l, (30)

i=1

From equation (29), for ¢ =2, we have

-2

E(6?) =[(n+a+1)(n+0!)]£ﬁ+znllog [1—e(c/xi)a (1+/1(1—e(“/xi)a ))T} . (31)
From equation (29), for c=-1, we have

E(%} - m(ﬂ+glog [1—e‘<°/xi)a (1+ /1(1—e‘<°/Xi>a ))T} . (32)

From equation (29), for c=c+1, we have

£ ( Hm) _ F(;‘:E:::; Y [ﬂ + .Z:: log [1— e () (1+ 2 (l— e () ))Tj(cm . (33)

6. Bayes Estimators under g,(0)

From equation (6), on using (30), the Bayes estimator of 6 under squared error loss function is
given by

i=1

0s = (n+ a)[ﬁ + Zn: log [1_ a (/%) (1+ /1(1—e(c/xi)a ))TT , (34)

From equation (8), on using (31), the Bayes estimator of 6 under precautionary loss function is
obtained as

A

Op = [(n +a+1)(n+ a)]% (,B + iZl“log [1— e () (1+ 2(1_ L ))T}l (35)

From equation (10), on using (32), the Bayes estimator of 6 under entropy loss function is given
by

i=1

Oc =(n+a +1)£,B +> log {1_e<c/ma (1+ /1(1— g () )ﬂljl (36)

From equation (12), on using (30) and (32), the Bayes estimator of 6 under K-loss function is
given by
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-1
A

Ox =[(n+a)(n+a-1)] (ﬁ+glog [1—e(°/xi)a (1+/1(1_e(°/xi)‘"‘))]1} . (37)

From equation (14), on using (29) and (33), the Bayes estimator of 6 under Al-Bayyati’s loss
function comes out to be

i=1

n a a 71 71
On =(n+a+c)(ﬂ+ZIog[1—e‘(°/xi) (1+2(1—e‘(°/xi) ))} ] : (38)

Conclusion

In this paper, we have obtained a number of estimators of parameter of exponential transmuted
Frechet distribution. In equation (4) we have obtained the maximum likelihood estimator of the
parameter. In equation (23), (24), (25), (26) and (27) we have obtained the Bayes estimators
under different loss functions using quasi prior. In equation (34), (35), (36), (37) and (38) we
have obtained the Bayes estimators under different loss functions using gamma prior. In the
above equation, it is clear that the Bayes estimators depend upon the parameters of the prior
distribution. We therefore recommend that the estimator’s choice lies according to the value of
the prior distribution which in turn depends on the situation at hand.
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