Int Jr. of Mathematical Sciences \& Applications
Vol. 5, No. 2, (July-December, 2015)
Copyright Mind Reader Publications
ISSN No: 2230-9888
www.journalshub.com

ON THE ZEROS OF POLYNOMIALS

\dagger School of Mathematics and Statistics University of Hyderabad-500046, India.
Email: glrsm@uohyd.ernet.in
\ddagger Department of Mathematics, Govt. Degree College, Wanaparthy-509103, Mahabubnagar, Telangana, India.
* for corresponding author Email: ramulu.purra@gmail.com

Abstract. In this paper we concider the problem of finding the estimation of maximum number of zeros in a prescribed region and the results which we obtain generalizes and improves upon some well known results.

Mathematics Subject Classification: 30C10, 30C15.
Keywords: Zeros of Polynomial,Enestrom Kakeya theorem, Prescribed Region.

1. Introduction

Eneström- Kakeya [1-2] states that if $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n such that $0<a_{0} \leq$ $a_{1} \leq \ldots \leq a_{n-1} \leq a_{n}$, then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq 1$. Some results already proved in literature[6,7], concerning the number of zeros of the polynomial in the region $|z| \leq \frac{1}{2}$, the following result is due to Mohammad [3].

Theorem A_{1}. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n such that $0<a_{0} \leq a_{1} \leq \ldots \leq a_{n-1} \leq a_{n}$ then the number of zeros of $P(z)$ in $|z| \leq \frac{1}{2}$, does not exceed

$$
1+\frac{1}{\log 2} \log \frac{a_{n}}{a_{0}}
$$

Dewan [4] generalized Theorem A_{1} to the polynomials with complex coefficients and obtained the following result.

Theorem A_{2}. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients such that

$$
\left|\arg \left(a_{i}\right)-\beta\right| \leq \alpha \leq \frac{\pi}{2}, i=0,1,2, \ldots, n
$$

for some real β and $\left|a_{0}\right| \leq\left|a_{1}\right| \leq \ldots \leq\left|a_{n-1}\right| \leq\left|a_{n}\right|$ then the number of zeros of $P(z)$ in $|z| \leq \frac{1}{2}$ does not exceed

$$
\frac{1}{\log 2} \log \frac{\left|a_{n}\right|(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=0}^{n}\left|a_{i}\right|}{\left|a_{0}\right|} .
$$

In this paper We want to prove the following results.

Theorem 1. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients such that

$$
\left|\arg \left(a_{i}\right)-\beta\right| \leq \alpha \leq \frac{\pi}{2}, i=0,1,2, \ldots, n
$$

for some real $\beta, a_{0} \neq 0$ and $\left|a_{0}\right| \geq\left|a_{1}\right| \geq \ldots \geq\left|a_{n-1}\right| \geq\left|a_{n}\right|$ then the number of zeros of $P(z)$ in $|z| \leq r$, $0<r<1$, does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left|a_{0}\right|(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=1}^{n}\left|a_{i}\right|}{\left|a_{0}\right|}
$$

Corollary 1. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients such that

$$
\left|\arg \left(a_{i}\right)-\beta\right| \leq \alpha \leq \frac{\pi}{2}, i=0,1,2, \ldots, n
$$

for some real $\beta, a_{0} \neq 0$ and $\left|a_{0}\right| \geq\left|a_{1}\right| \geq \ldots \geq\left|a_{n-1}\right| \geq\left|a_{n}\right|$ then the number of zeros of $P(z)$ in $|z| \leq \frac{1}{2}$ does not exceed

$$
\frac{1}{\log 2} \log \frac{\left|a_{0}\right|(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=1}^{n}\left|a_{i}\right|}{\left|a_{0}\right|}
$$

Remark 1. By taking $r=\frac{1}{2}$ in Theorem 1, then it reduces to Corollary 1.
Theorem 2. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients such that

$$
\left|\arg \left(a_{i}\right)-\beta\right| \leq \alpha \leq \frac{\pi}{2}, i=0,1,2, \ldots, n
$$

for some real $\beta, a_{0} \neq 0$ and $\left|a_{0}\right| \geq\left|a_{1}\right| \geq \ldots \geq\left|a_{m-1}\right| \geq\left|a_{m}\right| \leq\left|a_{m+1}\right| \leq \ldots \leq\left|a_{n-1}\right| \leq\left|a_{n}\right|$ then the number of zeros of $P(z)$ in $|z| \leq r, 0<r<1$, does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left(\left|a_{n}\right|+\left|a_{0}\right|\right)(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=1}^{n-1}\left|a_{i}\right|-2\left|a_{m}\right| \cos \alpha}{\left|a_{0}\right|}
$$

Corollary 2. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients such that

$$
\left|\arg \left(a_{i}\right)-\beta\right| \leq \alpha \leq \frac{\pi}{2}, \quad i=0,1,2, \ldots, n
$$

for some real $\beta, a_{0} \neq 0$ and $\left|a_{0}\right| \geq\left|a_{1}\right| \geq \ldots \geq\left|a_{m-1}\right| \geq\left|a_{m}\right| \leq\left|a_{m+1}\right| \leq \ldots \leq\left|a_{n-1}\right| \leq\left|a_{n}\right|$ then the number of zeros of $P(z)$ in $|z| \leq \frac{1}{2}$, does not exceed

$$
\frac{1}{\log 2} \log \frac{\left(\left|a_{n}\right|+\left|a_{0}\right|\right)(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=1}^{n-1}\left|a_{i}\right|-2\left|a_{m}\right| \cos \alpha}{\left|a_{0}\right|}
$$

Corollary 3. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients such that $\left|\arg \left(a_{i}\right)\right| \leq \frac{\pi}{2}, a_{0} \neq 0$ and $\left|a_{0}\right| \geq\left|a_{1}\right| \geq \ldots \geq\left|a_{m-1}\right| \geq\left|a_{m}\right| \leq\left|a_{m+1}\right| \leq \ldots \leq\left|a_{n-1}\right| \leq\left|a_{n}\right|$ then the number of zeros of $P(z)$ in $|z| \leq \frac{1}{2}$, does not exceed

$$
1+\frac{1}{\log \frac{1}{r}} \log \frac{\left|a_{n}\right|+\left|a_{0}\right|-\left|a_{m}\right|}{\left|a_{0}\right|} .
$$

Remark 2. (i) By taking $r=\frac{1}{2}$ in Theorem 2, then it reduces to Corollary 2.
(ii)By taking $\alpha=\beta=0$ in Theorem 2, then it reduces to Corollary 3.

Theorem 3. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients.
If $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \operatorname{Im}\left(a_{i}\right)=\beta_{i}$ for $i=0,1,2, \ldots, n$ and $a_{0} \neq 0, \alpha_{0} \geq \alpha_{1} \geq \ldots \geq \alpha_{n-1} \geq \alpha_{n}$ then the number of zeros of $P(z)$ in $|z| \leq r, 0<r<1$, does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left|\alpha_{0}\right|+\alpha_{0}+\left|\alpha_{n}\right|-\alpha_{n}+2 \sum_{i=0}^{n}\left|\beta_{i}\right|}{\left|a_{0}\right|}
$$

Corollary 4. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients. If $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \operatorname{Im}\left(a_{i}\right)=\beta_{i}$ for $i=0,1,2, \ldots, n$ and $\alpha_{0} \geq \alpha_{1} \geq \ldots \geq \alpha_{n-1} \geq \alpha_{n}>0$
then the number of zeros of $P(z)$ in $|z| \leq r, 0<r<1$, does not exceed

$$
1+\frac{1}{\log \frac{1}{r}} \log \frac{\alpha_{0}+\sum_{i=0}^{n}\left|\beta_{i}\right|}{\left|a_{0}\right|} .
$$

Remark 3. By taking $\alpha_{n}>0$ in Theorem 3, then it reduces to Corollary 4.
Theorem 4. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients. If $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}, \operatorname{Im}\left(a_{i}\right)=\beta_{i}$ for $i=0,1,2, \ldots, n$ and $a_{0} \neq 0$,

$$
\alpha_{0} \geq \alpha_{1} \geq \ldots \geq \alpha_{m-1} \geq \alpha_{m} \leq \alpha_{m+1} \leq \ldots \leq \alpha_{n-1} \leq \alpha_{n}
$$

then the number of zeros of $P(z)$ in $|z| \leq r, 0<r<1$, does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left|\alpha_{0}\right|+\alpha_{0}-2 \alpha_{m}+\left|\alpha_{n}\right|+\alpha_{n}+2 \sum_{i=0}^{n}\left|\beta_{i}\right|}{\left|a_{0}\right|}
$$

Corollary 5. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients. If $\operatorname{Re}\left(a_{i}\right)=\alpha_{i}>0, \operatorname{Im}\left(a_{i}\right)=\beta_{i}$ for $i=0,1,2, \ldots, n$ and

$$
\alpha_{0} \geq \alpha_{1} \geq \ldots \geq \alpha_{m-1} \geq \alpha_{m} \leq \alpha_{m+1} \leq \ldots \leq \alpha_{n-1} \leq \alpha_{n}
$$

then the number of zeros of $P(z)$ in $|z| \leq r, 0<r<1$, does not exceed

$$
1+\frac{1}{\log \frac{1}{r}} \log \frac{\alpha_{0}-\alpha_{m}+\alpha_{n}+\sum_{i=0}^{n}\left|\beta_{i}\right|}{\left|a_{0}\right|}
$$

Corollary 6. Let $P(z)=\sum_{i=0}^{n} \alpha_{i} z^{i}$ be a polynomial of degree n with real coefficients. $\alpha_{0} \neq 0$,

$$
\alpha_{0} \geq \alpha_{1} \geq \ldots \geq \alpha_{m-1} \geq \alpha_{m} \leq \alpha_{m+1} \leq \ldots \leq \alpha_{n-1} \leq \alpha_{n}
$$

then the number of zeros of $P(z)$ in $|z| \leq r, 0<r<1$, does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left|\alpha_{0}\right|+\alpha_{0}-2 \alpha_{m}+\left|\alpha_{n}\right|+\alpha_{n} \mid}{\mid a_{0}}
$$

Remark 4. (i) By taking $\alpha_{i}>0$ for $i=0,1,2, \ldots, n$ in Theorem 4, then it reduces to Corollary 5 .
(ii) By taking $\beta_{i}=0$ for $i=0,1,2, \ldots, n$ in Theorem 4, then it reduces to Corollary 6 .

We need the following lemmas for proof of the theorems.

2. Lemmas

Lemma 1. Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with complex coefficients such that

$$
\left|\arg \left(a_{i}\right)-\beta\right| \leq \alpha \leq \frac{\pi}{2} ;\left|a_{i-1}\right| \leq\left|a_{i}\right| \text { for some } i=0,1,2, \ldots, n
$$

then $\left|a_{i}-a_{i-1}\right| \leq\left(\left|a_{i}\right|-\left|a_{i-1}\right|\right) \cos \alpha+\left(\left|a_{i}\right|+\left|a_{i-1}\right|\right) \sin \alpha$.
The above lemma is due to Govil [5].
Lemma 2. [4]: If $f(z)$ is regular $f(0) \neq 0$ and $f(z) \leq M$ in $|z| \leq 1$ then the number of zeros of $f(z)$ in $|z| \leq r, 0<r<1$ does not exceed $\frac{1}{\log \frac{1}{r}} \log \frac{M}{|f(0)|}$.

3. Proof of the Theorems

Proof of Theorem 1.

Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a polynomial of degree n
Then consider the polynomial $Q(z)=(1-z) P(z)$ so that
$Q(z)=-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(a_{1}-a_{0}\right) z+a_{0}$. Then for $|z|>1$, we have
$Q(z) \leq\left|a_{n}\right|+\sum_{i=1}^{n}\left|a_{i}-a_{i-1}\right|+\left|a_{0}\right|$
$\leq\left|a_{n}\right|+\sum_{i=1}^{n}\left(\left|a_{i-1}\right|-\left|a_{i}\right|\right) \cos \alpha+\sum_{i=1}^{n}\left(\left|a_{i-1}\right|+\left|a_{i}\right|\right) \sin \alpha+\left|a_{0}\right|$ (by using lemma 1)
$=\left|a_{0}\right|(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=1}^{n}\left|a_{i}\right|-\left|a_{n}\right|(\cos \alpha+\sin \alpha-1)$
$\leq\left|a_{0}\right|(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=1}^{n}\left|a_{i}\right|$
Apply Lemma 2 to $\mathrm{Q}(\mathrm{z})$, we get that the number of zeros of $\mathrm{Q}(\mathrm{z})$ in $|z| \leq r$ does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left|a_{0}\right|(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=1}^{n}\left|a_{i}\right|}{\left|a_{0}\right|}
$$

Since all the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq r, 0<r<1$, is also equal to the number of zeros of $\mathrm{Q}(\mathrm{z})$ in $|z| \leq r$, we get the required result.
This completes the proof of Theorem 1.

Proof of Theorem 2.

Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a polynomial of degree n
Then consider the polynomial $Q(z)=(1-z) P(z)$ so that
$Q(z)=-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(a_{1}-a_{0}\right) z+a_{0}$. Then for $|z|>1$, we have
$Q(z) \leq\left|a_{0}\right|+\sum_{i=1}^{m}\left|a_{i}-a_{i-1}\right|+\sum_{i=m+1}^{n}\left|a_{i}-a_{i-1}\right|+\left|a_{n}\right|$
$\leq\left|a_{0}\right|+\sum_{i=1}^{m}\left(\left|a_{i-1}\right|-\left|a_{i}\right|\right) \cos \alpha+\sum_{i=1}^{m}\left(\left|a_{i-1}\right|+\left|a_{i}\right|\right) \sin \alpha+$
$\sum_{i=m+1}^{n}\left(\left|a_{i}\right|-\left|a_{i-1}\right|\right) \cos \alpha+\sum_{i=m+1}^{n}\left(\left|a_{i}\right|+\left|a_{i-1}\right|\right) \sin \alpha+\left|a_{n}\right|$ (by using lemma 1)
$=\left(\left|a_{n}\right|+\left|a_{0}\right|\right)(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=1}^{n-1}\left|a_{i}\right|-2\left|a_{m}\right| \cos \alpha$
Apply Lemma 2 to $\mathrm{Q}(\mathrm{z})$, we get that the number of zeros of $\mathrm{Q}(\mathrm{z})$ in $|z| \leq r$ does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left(\left|a_{n}\right|+\left|a_{0}\right|\right)(\cos \alpha+\sin \alpha+1)+2 \sin \alpha \sum_{i=1}^{n-1}\left|a_{i}\right|-2\left|a_{m}\right| \cos \alpha}{\left|a_{0}\right|}
$$

Since all the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq r, 0<r<1$, is also equal to the number of zeros of $\mathrm{Q}(\mathrm{z})$ in $|z| \leq r$, we get the required result.

This completes the proof of Theorem 2.

Proof of Theorem 3.

Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a polynomial of degree n
Then consider the polynomial $Q(z)=(1-z) P(z)$ so that
$Q(z)=-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(a_{1}-a_{0}\right) z+a_{0}$. Then for $|z|>1$, we have
$Q(z) \leq\left|a_{n}\right|+\sum_{i=1}^{n}\left|a_{i}-a_{i-1}\right|+\left|a_{0}\right|$
$\leq\left|\alpha_{n}\right|+\left|\beta_{n}\right|+\sum_{i=1}^{n}\left[\left(\left|\alpha_{i}-\alpha_{i-1}\right|\right)+\left(\left|\beta_{i}-\beta_{i-1}\right|\right)\right]+\left|\alpha_{0}\right|+\left|\beta_{0}\right|$
$\leq\left|\alpha_{n}\right|+\left|\beta_{n}\right|+\sum_{i=1}^{n}\left(\alpha_{i-1}-\alpha_{i}\right)+\sum_{i=1}^{n}\left(\left|\beta_{i}\right|+\left|\beta_{i-1}\right|\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|$

$$
\leq\left|\alpha_{0}\right|+\alpha_{0}+\left|\alpha_{n}\right|-\alpha_{n}+2 \sum_{i=0}^{n}\left|\beta_{i}\right|
$$

Apply Lemma 2 to $\mathrm{Q}(\mathrm{z})$, we get that the number of zeros of $\mathrm{Q}(\mathrm{z})$ in $|z| \leq r$ does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left|\alpha_{0}\right|+\alpha_{0}+\left|\alpha_{n}\right|-\alpha_{n}+2 \sum_{i=0}^{n}\left|\beta_{i}\right|}{\left|a_{0}\right|}
$$

Since all the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq r, 0<r<1$, is also equal to the number of zeros of $\mathrm{Q}(\mathrm{z})$ in $|z| \leq r$, we get the required result.
This completes the proof of Theorem 3.

Proof of Theorem 4.

Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a polynomial of degree n
Then consider the polynomial $Q(z)=(1-z) P(z)$ so that
$Q(z)=-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots+\left(a_{1}-a_{0}\right) z+a_{0}$. Then for $|z|>1$, we have
$Q(z) \leq\left|a_{n}\right|+\sum_{i=1}^{n}\left|a_{i}-a_{i-1}\right|+\left|a_{0}\right|$
$\leq\left|\alpha_{n}\right|+\left|\beta_{n}\right|+\sum_{i=1}^{n}\left[\left(\left|\alpha_{i}-\alpha_{i-1}\right|\right)+\left(\left|\beta_{i}-\beta_{i-1}\right|\right)\right]+\left|\alpha_{0}\right|+\left|\beta_{0}\right|$
$\leq\left|\alpha_{n}\right|+\left|\beta_{n}\right|+\sum_{i=1}^{m}\left(\alpha_{i-1}-\alpha_{i}\right)+\sum_{i=m+1}^{n}\left(\alpha_{i}-\alpha_{i-1}\right)+\sum_{i=1}^{n}\left(\left|\beta_{i}\right|+\left|\beta_{i-1}\right|\right)+\left|\alpha_{0}\right|+\left|\beta_{0}\right|$
$\leq\left|\alpha_{0}\right|+\alpha_{0}-2 \alpha_{m}+\left|\alpha_{n}\right|+\alpha_{n}+2 \sum_{i=0}^{n}\left|\beta_{i}\right|$
Apply Lemma 2 to $\mathrm{Q}(\mathrm{z})$, we get that the number of zeros of $\mathrm{Q}(\mathrm{z})$ in $|z| \leq r$ does not exceed

$$
\frac{1}{\log \frac{1}{r}} \log \frac{\left|\alpha_{0}\right|+\alpha_{0}-2 \alpha_{m}+\left|\alpha_{n}\right|+\alpha_{n}+2 \sum_{i=0}^{n}\left|\beta_{i}\right|}{\left|a_{0}\right|}
$$

Since all the number of zeros of $\mathrm{P}(\mathrm{z})$ in $|z| \leq r, 0<r<1$, is also equal to the number of zeros of $\mathrm{Q}(\mathrm{z})$ in $|z| \leq r$, we get the required result.

This completes the proof of Theorem 4.

References

[1] G.Eneström,Remarquee sur un théorème relatif aux racines de l'equation $a_{n}+\ldots+a_{0}=0$ oü tous les coefficient sont et positifs, Tôhoku Math.J 18 (1920),34-36.
[2] S.Kakeya, On the limits of the roots of an alegebraic equation with positive coefficient, Tôhoku Math.J2(1912-1913),140142.
[3] Q. G. Mohammad, On the Zeros of the Polynomials,American Mathematical Monthly, Vol. 72, No. 6, 1965,pp. 631-633. doi:10.2307/2313853
[4] K. K. Dewan, Extremal Properties and Coefficient Estimates for Polynomials with Restricted Zeros and on Location of Zeros of Polynomials, Ph.D Thesis, Indian Institutes of Technology, Delhi, 1980
[5] N.K.Govil and Q.I.Rehman, On the EnstromKakeya Theorem Tohoku Math .J. 20, (1968), 126-136.
[6] P.Ramulu, Some Generalization of Eneström-Kakeya Theorem,International Journal of Mathematics and Statistics Invention (IJMSI), Volume 3 Issue 2, (February. 2015) PP-52-59
[7] P.Ramulu, G.L .Reddy ,On the Enestrom-Kakeya theorem. International Journal of Pure and Applied Mathematics,Vol. 102 No.4, 2015.

