ORDERED FUZZY SCALABLE PRESEMI λ COMPACT SPACES

 $^{1}\mathrm{Dr.}$ D. Amsaveni, 2 S. Meenakshi and $^{3}\mathrm{J.}$ Tamilmani

¹Assistant Professor, Department of Mathematics, Sri Sarada College for Women, Salem,

Tamilnadu, India

^{2,3}Department of Mathematics, Sri Sarada College for Women, Salem, Tamilnadu, India email: ¹d_amsaveni@rediffmail.com, ²sylphmeenu@gmail.com,

 $^{3} tamilmani.jambu@gmail.com$

Abstract

In this article, the initiation of ordered fuzzy scalable structure spaces is given and FQ_X^{**} presemi λ compactness is explored. Also some interesting properties of ordered fuzzy presemi λ - compact spaces are studied.

Keywords: Ordered fuzzy scalable structure spaces, FQ_X^{**} presemi λ cover and FQ_X^{**} presemi λ compact space

2010 Mathematics Subject Classification: 54A40, 03E72, 54F45

1 Introduction

The concept of fuzzy set was introduced by Zadeh in his classical paper [14] in 1965. Fuzzy sets have applications in many fields such as information [9] and control [12]. The theory of fuzzy topological spaces was introduced and developed by Chang [5] and since then various notions in classical topology have been extended to fuzzy topological spaces. In 1968 Chang [4] was the first who used the term fuzzy compact. The concept of fuzzy paracompactness was introduced by M. K. Luo[7]. S.J. John and T. Baiju [6] introduced the concept of metacompactness in L-topological spaces. The idea of scale Q in a topological space was introduced by M. Burgin[2]. The notions of fuzzy scalable structure space and a FQ_X^{**} presemi λ closed sets were introduced by D.Amsaveni[1]. Nachbin[8-10] gave some results on the relationship between topological and order structures and several other authors have continued his work. In this paper, the concepts of an order and a fuzzy scalable structure space are combined and ordered FQ_X^{**} presemi λ compact spaces, ordered FQ_X^{**} presemi λ metacompact spaces are introduced. Also some of their properties are studied.

2 Preliminaries

Definition 2.1. [3]

Let X be a non empty set. An order on X is a relation \leq on X which is reflexive, antisymmetric and transitive.

Definition 2.2. [13]

Let X be a non-empty set and I be the unit interval [0, 1]. A fuzzy set in X is an element of the set I^X of all functions from X to I.

Definition 2.3. [3]

A fuzzy set μ , in a ordered set X, is called:

(i) Increasing if $X \leq Y$ implies $\mu(x) \leq \mu(y)$ (ii)Decreasing if $X \leq Y$ implies $\mu(x) \geq \mu(y)$

Definition 2.4. [5]

A fuzzy topology T on X is a collection of subsets of I^X such that

(i) $0, 1 \in T$

(ii) If $\lambda, \mu \in T$, then $\lambda \wedge \mu \in T$,

(iii) If $\lambda_i \in T$ for each $i \in \Lambda$ then $\forall \lambda_i \in T$.

The ordered pair (X, T) is called a fuzzy topological space. A fuzzy set λ in a fuzzy topological space is called a fuzzy closed set, if its complement λ^c or $(1 - \lambda)$ is fuzzy open.

Definition 2.5. [4]

Given fuzzy topological space (X, τ) and (Y, δ) , a function $f : X \leftarrow Y$ is fuzzy continuous if the inverse image under f of any open fuzzy set in Y is an open fuzzy set in X, that is if $f^{-1}(\mu) \in \tau$ whenever $\mu \in \delta$.

Definition 2.6. [4]

Let (X_i, δ_i) be a fuzzy topological space for each index $i \in I$. The product fuzzy topology $\delta = \prod_i \delta_i$ on the set $X = \prod_i X_i$ is the coarsest fuzzy topology on X making all the projection mappings $\pi_i : X \to X_i$ fuzzy continuous.

Definition 2.7. [5]

A family A of fuzzy sets is a cover of a fuzzy set B iff $B \subset \bigcup \{A \mid A \in A\}$. It is an open cover iff each member of A is an open fuzzy set. A subcover of A is a subfamily of A which is also a cover.

Definition 2.8. [5]

A fuzzy topological space (X, τ) is compact if every cover of X by members of τ contains a finite subcover.

Definition 2.9. [13]

A family of interval valued fuzzy sets on X is said to be inadequate iff it fails to cover X and finitely inadequate iff no finite subfamily of it covers X.

Definition 2.10. [3]

An ordered set on which there is given a fuzzy topology is called a ordered fuzzy topological space.

Definition 2.11. [7]

Let A be a family of sets and B be a set in fuzzy topological spaces (X, τ) . We say that A is * locally finite in B if for each point e in B, there exists a U in neighbourhood of e is intersects with at most a finite number of sets of A.

Definition 2.12. [1]

Let X be a non empty set, $\tau_i : i \in J$ be the topologies associated with X and let τ_X^* be the collection of all fuzzy open sets of (X, τ_i) and a function $Q_X : X \to \tau_X^*$ be the fuzzy scale. A fuzzy scalable structure is denoted by Q_X^{**} and defined by $Q_X^{**} = \{0, 1\} \bigcup Q_X^*$ where $Q_X^* = \{Q_X(x) : x \in X\}$.

Definition 2.13. [1]

Let X be a non empty set, τ_X^* be the collection of all fuzzy open sets of X and Q_X^{**} be a fuzzy scalable structure on X. Then, the triad (X, τ_X^*, Q_X^{**}) is called a fuzzy scalable structure space.

Every member of Q_X^{**} is called a fuzzy Q_X^{**} open set (briefly, FQ_X^{**} closed).

Definition 2.14. [1]

Let $(X_1, \tau_{X_1}^*, Q_{X_1}^{**})$ and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**})$ be any two fuzzy scalable structure spaces. Then the function $f: (X_1, \tau_{X_1}^*, Q_{X_1}^{**}) \to (X_2, \tau_{X_2}^*, Q_{X_2}^{**})$ is said to be FQ_X^{**} pre semi λ continuous if for every FQ_X^{**} closed set in $(X_2, \tau_{X_2}^*, Q_{X_2}^{**})$ there exists a FQ_X^{**} pre semi λ closed set in $(X_1, \tau_{X_1}^*, Q_{X_2}^{**})$.

3 Ordered Fuzzy Scalable Presemi λ Compact Space

Definition 3.1. Let (X, τ_X^*, Q_X^{**}) be a fuzzy scalable structure space. Let μ be any fuzzy set. Then μ is said to be an

(i) increasing fuzzy set if $\mu(x) \leq \mu(y)$ and

(ii) decreasing fuzzy set if $\mu(x) \ge \mu(y)$

whenever $x \leq y$ and $x, y \in X$.

Definition 3.2. Let X be an ordered set, τ_X^* be the collection of all fuzzy open sets of X and Q_X^{**} be a fuzzy scalable structure on X. Then $(X, \tau_X^*, Q_X^{**}, \leq)$ is said to be an ordered fuzzy scalable structure space.

Definition 3.3. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. Let μ be a fuzzy set in X. Then

(i) $FQ_X^{**}I^{cl}(\mu) = \wedge \{\gamma : \gamma \text{ is a } FQ_X^{**} \text{ increasing closed set and } \gamma \geq \mu \}.$ (ii) $FQ_X^{**}D^{cl}(\mu) = \wedge \{\gamma : \gamma \text{ is a } FQ_X^{**} \text{ decreasing closed set and } \gamma \geq \mu \}.$ (iii) $FQ_X^{**}I^o(\mu) = \vee \{\gamma : \gamma \text{ is a } FQ_X^{**} \text{ increasing open set and } \gamma \leq \mu \}.$ $(\mathrm{iv})FQ_X^{**}\ D^o(\mu) = \vee\ \{\gamma:\ \gamma \text{ is a }FQ_X^{**} \text{ decreasing open set and } \gamma \leq \mu\ \}.$

clearly $FQ_X^{**} I^{cl}(\mu)$ is the smallest increasing (resp., decreasing) FQ_X^{**} closed set containing μ and $FQ_X^{**} I^o(\mu)$ (resp., $FQ_X^{**}D^o(\mu)$ is the largest increasing (resp., decreasing) FQ_X^{**} open set contained in μ .

Definition 3.4. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. A collection $\mathcal{C} = \{\mu_i : i \in J\}$ of increasing (resp. decreasing) fuzzy sets in X is said to be an increasing (resp., decreasing) FQ_X^{**} cover of 1_X if $\forall \mu_i = 1_X$ and it is said to be increasing (resp., decreasing) FQ_X^{**} presemi λ open cover iff each member of \mathcal{C} is an increasing (resp., decreasing) FQ_X^{**} presemi λ open set.

Definition 3.5. Let $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ be any two ordered fuzzy scalable structure spaces. A function $f: (X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq) \to (X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ is said to be an upper (resp., lower) FQ_X^{**} presemi λ continuous function if for each increasing (resp., decreasing) $FQ_{X_2}^{**}$ presemi λ open set γ in $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$, the inverse image $f^{-1}(\gamma)$ is an increasing (resp., decreasing) $FQ_{X_1}^{**}$ presemi λ open set in $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$.

A function f: $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq) \to (X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ is said to be an ordered FQ_X^{**} presemi λ continuous function if its both upper and lower FQ_X^{**} presemi λ continuous function.

Definition 3.6. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. Then $(X, \tau_X^*, Q_X^{**}, \leq)$ is said to be an upper (resp., lower) FQ_X^{**} presemi λ compact space if for each increasing (resp., decreasing) FQ_X^{**} presemi λ open cover of \mathcal{C} has a finite subcollection $\mathcal{S} = \{\mu_j : j \in J\}$ with $\bigvee_{j=1}^n \mu_j = 1_X$

Definition 3.7. An ordered fuzzy scalable structure space $(X, \tau_X^*, Q_X^{**}, \leq)$ is said to be an ordered fuzzy FQ_X^{**} presemi λ compact space if it is both upper FQ_X^{**} presemi λ compact space and lower FQ_X^{**} presemi λ compact space.

Definition 3.8. Let $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ be any two ordered fuzzy scalable structure spaces with $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ is an upper (resp., lower) $FQ_{X_2}^{**}$ presemi λ compact space. Let $X_1 \times X_2$ be an ordered fuzzy scalable structure space. If $\eta(x)$ is an icreasing (resp., decreasing) fuzzy set that contain a slice in $X_1 \times X_2$, then there exists a tube in the slice and also in $\eta(x)$.

Proposition 3.1. Let $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ be any two ordered fuzzy scalable structure spaces. If $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ is an upper $FQ_{X_1}^{**}$ presemi λ compact space and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ is an upper $FQ_{X_2}^{**}$ presemi λ compact space then $X_1 \times X_2$ is an upper FQ_X^{**} presemi λ compact space.

\mathbf{P} roof

Let $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ be an upper $FQ_{X_1}^{**}$ presemi λ compact space and upper $FQ_{X_2}^{**}$ presemi λ compact space respectively. Let \mathcal{C} be an increasing FQ_X^{**} presemi λ open cover of $X_1 \times X_2$. For any $x \in X_1$, $\{x\} \times 1_{X_2}$ is an upper FQ_X^{**} presemi λ compact space. Then there exists an increasing FQ_X^{**} presemi λ open subcover $\{\mu_{i_j} : i \text{ and } j \in J\}$ $\in \mathcal{C}$ and $\eta(x) = \bigvee_{j=1}^{n} \{\mu_{i_j}\}$ is the union of increasing finite element. By the, Definition 3.8 there exists an increasing FQ_X^{**} presemi λ open set $\gamma(x) \times X_2$, where $\{x\} \times 1_{X_2} \leq \gamma(x) \times 1_{X_2} \leq \eta(x)$.

Since $\gamma(x)$ is an increasing $FQ_{X_1}^{**}$ presemi λ open cover S of $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq), \gamma(x)$ have an increasing $FQ_{X_1}^{**}$ presemi λ subcover $\gamma(x_n) = \bigvee_{j=1}^n \{\omega(\mathbf{x}_j)\}$ in $\eta(x_n)$. Then for each x_n , $\gamma(x_n) \times 1_{X_2}$ is also in $\eta(x_n)$. Since $\eta(x_n)$ is an increasing finite union of all elements of S and the finite subcollection $\bigvee_{j=1}^n \{\omega(\mathbf{x}_j) \times X_2\}$ is the increasing FQ_X^{**} presemi λ open cover for $X_1 \times X_2$, the family $\eta(x_n) = \bigvee_{j=1}^n \{\mu(\mathbf{x}_j)\}$ is the increasing FQ_X^{**} presemi λ open cover for $X_1 \times X_2$.

Proposition 3.2. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. If γ is a ordered FQ_X^{**} presemi λ compact subspace of $(X, \tau_X^*, Q_X^{**}, \leq)$ then for every family $\{\mu_i : i \in I\}$ of FQ_X^{**} presemi λ open sets of X such that $\gamma \leq \bigvee_i \mu_i$ there exists a finite set $\{i_1, i_2, ..., i_n\} \subset I$ such that $\gamma \leq \bigvee_{j=1}^n \mu_{i_j}$.

Proof

It follows from the definition of subspace.

Proposition 3.3. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered FQ_X^{**} presemi λ compact space. If μ is FQ_X^{**} presemi λ closed set of X then it is FQ_X^{**} presemi λ compact set. **proof**

Let μ be a FQ_X^{**} presemi λ closed set of the ordered FQ_X^{**} presemi λ compact space $(X, \tau_X^*, Q_X^{**}, \leq)$ and let C be both increasing and decreasing FQ_X^{**} presemi λ open cover of μ by FQ_X^{**} presemi λ open sets in $(X, \tau_X^*, Q_X^{**}, \leq)$. Since μ is FQ_X^{**} presemi λ closed, then $1_X - \mu$ is FQ_X^{**} presemi λ open and $C^* = C \vee (1_X - \mu)$ is both increasing and decreasing FQ_X^{**} presemi λ open cover of $(X, \tau_X^*, Q_X^{**}, \leq)$. Since $(X, \tau_X^*, Q_X^{**}, \leq)$ is ordered FQ_X^{**} presemi λ compact space, it has a finite increasing and decreasing subcover, containing only finitely many members $\mathcal{C}_1, \mathcal{C}_2...\mathcal{C}_n$ of \mathcal{C} and may contain $1_X - \mu$. Since $1_X = (1_X - \mu) \vee \vee_{i=1}^n C_i$ it follows that $\mu \leq \vee_{i=1}^n C_i$ and has finite increasing and decreasing FQ_X^{**} presemi λ subcover.

Corollary 3.4. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered FQ_X^{**} presemi λ compact space. Let μ be an FQ_X^{**} presemi λ open set of X. If a family $\{\gamma_i : i \in I\}$ of FQ_X^{**} presemi λ closed sets of X contains atleast one FQ_X^{**} presemi λ compact set and $\wedge_{i \in I} \gamma_i \leq \mu$, then there exists a finite set $\{i_1, i_2, ... i_n\} \subset I$ such that $\wedge_{j=1}^n \gamma_{i_j} \leq \mu$.

Proof

Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered FQ_X^{**} presemi λ compact space, μ be an FQ_X^{**} presemi λ open set and a family $\{\gamma_i : i \in I\}$ of FQ_X^{**} presemi λ closed sets of X. Then $1_X \setminus \mu = \gamma$ is presemi λ closed set and $1_X \setminus \gamma_i = \eta_i$ is presemi λ open set. By Proposition 3.3 γ is FQ_X^{**} presemi λ compact set. Then by Proposition 3.2, there exists a finite set $\{i_1, i_2, ..., i_n\} \subset I$ such that $\gamma \leq \bigvee_{j=1}^n \eta_{i_j}$. This implies that $\wedge_{j=1}^n \gamma_{i_j} \leq \mu$.

Proposition 3.5. Let $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ be an ordered $FQ_{X_1}^{**}$ presemi λ compact space and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ be a ordered fuzzy scalabel structure space. If a function $f: (X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq) \to (X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ is an ordered FQ_X^{**} presemi λ continuous function, then the

image of $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ is a $FQ_{X_2}^{**}$ presemi λ compact space. **Proof**

Let $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ be an ordered $FQ_{X_1}^{**}$ presemi λ compact space and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ \leq) be a ordered fuzzy scalabel structure space. Let μ_i be a $FQ_{X_2}^{**}$ presemi λ open cover of the space $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$. The family $\{f^{-1}(\mu_i)\}_{i\in I}$ is a $FQ_{X_1}^{**}$ presemi λ open cover of $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$. Since $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ is $FQ_{X_1}^{**}$ presemi λ compact space, $f^{-1}(\mu_{i_1}) \vee$ $f^{-1}(\mu_{i_2}) \vee \ldots \vee f^{-1}(\mu_{i_n}) = 1_{X_1}$, this implies that $\mu_{i_1} \vee \mu_{i_2} \vee \ldots \vee \mu_{i_n} = 1_{X_2}$. Hence $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ is $FQ_{X_2}^{**}$, \leq) is $FQ_{X_2}^{**}$ presemi λ compact space.

Definition 3.9. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. A collection $\mathcal{S} = \{\omega_i : i \in I\}$ of increasing (resp. decreasing) $FQ_{X_1}^{**}$ presemi λ open set in X is said to be an increasing (resp., decreasing) FQ_X^{**} presemi λ short if \mathcal{S} is not a increasing (resp., decreasing) FQ_X^{**} presemi λ short if \mathcal{S} is not a increasing (resp., decreasing) FQ_X^{**} presemi λ short if \mathcal{S} is not a increasing (resp., decreasing) FQ_X^{**} presemi λ short if \mathcal{S} is not a increasing (resp., decreasing) FQ_X^{**} presemi λ short if \mathcal{S} is not a increasing (resp., decreasing) FQ_X^{**} presemi λ short if \mathcal{S} is not a increasing (resp., decreasing) FQ_X^{**} presemi λ open cover of X.

 \mathcal{S} is said to be an ordered FQ_X^{**} presemi λ short of an ordered fuzzy scalable structure space $(X, \tau_X^*, Q_X^{**}, \leq)$ if it is both increasing FQ_X^{**} presemi λ short and decreasing FQ_X^{**} presemi λ short.

Definition 3.10. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. A collection $\mathcal{S} = \{\omega_i : i \in I\}$ of increasing (resp. decreasing) $FQ_{X_1}^{**}$ presemi λ open set in X is said to be an increasing (resp. decreasing) FQ_X^{**} presemi λ finite short if no finite subfamily of \mathcal{S} is not a increasing (resp. decreasing) FQ_X^{**} presemi λ open cover of X.

An ordered fuzzy scalable structure space $(X, \tau_X^*, Q_X^{**}, \leq)$ is said to be an ordered FQ_X^{**} presemi λ finite short if it is both increasing FQ_X^{**} presemi λ finite short and decreasing FQ_X^{**} presemi λ finite short.

Proposition 3.6. An ordered fuzzy scalable structure space $(X, \tau_X^*, Q_X^{**}, \leq)$ is FQ_X^{**} presemi λ compact space if and only if an ordered FQ_X^{**} presemi λ finite short of $(X, \tau_X^*, Q_X^{**}, \leq)$ is FQ_X^{**} presemi λ short.

Proof

Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered FQ_X^{**} presemi λ compact space and \mathcal{S} be any ordered FQ_X^{**} presemi λ finite short family of X. Assume that \mathcal{S} is not an ordered FQ_X^{**} presemi λ short. Then \mathcal{S} is both increasing and decreasing FQ_X^{**} presemi λ open cover for X which has no increasing and decreasing FQ_X^{**} presemi λ finite sub cover. This implies that $(X, \tau_X^*, Q_X^{**}, \leq)$ is not an ordered FQ_X^{**} presemi λ compact space. This is a contradiction. Hence, \mathcal{S} is an ordered FQ_X^{**} presemi λ short.

Conversely, assume that every ordered FQ_X^{**} presemi λ finite short of $(X, \tau_X^*, Q_X^{**}, \leq)$ is FQ_X^{**} presemi λ short. Suppose $(X, \tau_X^*, Q_X^{**}, \leq)$ is not an ordered FQ_X^{**} presemi λ compact space. This reveals that there exists both increasing and decreasing FQ_X^{**} presemi λ open cover \mathcal{S} for X which has no increasing and decreasing FQ_X^{**} presemi λ finite sub cover. Therefore, \mathcal{S} is an ordered FQ_X^{**} presemi λ finite short but not an ordered FQ_X^{**} presemi λ short. This contradicts to the fact that \mathcal{S} is an ordered FQ_X^{**} presemi λ short. Hence, $(X, \tau_X^*, Q_X^{**}, \leq)$ is an ordered FQ_X^{**} presemi λ compact space.

Definition 3.11. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be a ordered fuzzy scalable structure space and $\alpha_1, \alpha_2 \in (0, 1)$ such that $\alpha_1 \leq \alpha_2$. Let μ be a fuzzy set on $(X, \tau_X^*, Q_X^{**}, \leq)$ and $y \in X$. If

$$\mu_L(x) = \begin{cases} \alpha_1 & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$
$$\mu_U(x) = \begin{cases} \alpha_2 & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

then μ is called a fuzzy point on $(X, \tau_X^*, Q_X^{**}, \leq)$ and it is denoted by $y_{\alpha} = (y_{\alpha_1}, y_{\alpha_2})$ where y_{α_1} denotes the degree of lower approximation of fuzzy point y_{α} and y_{α_1} denotes the degree of upper approximation of fuzzy point y_{α} . The point $y \in X$ is called support of fuzzy point y_{α} and is denoted by supp(y).

Definition 3.12. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. A fuzzy set μ in $(X, \tau_X^*, Q_X^{**}, \leq)$ is called a FQ_X^{**} neighborhood of fuzzy point P_x^{α} if and only if there exists a FQ_X^{**} presemi λ open set γ such that $P_x^{\alpha} \in \gamma \leq \mu$.

Definition 3.13. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. A collection \mathcal{B} is said to be an increasing (resp. decreasing) FQ_X^{**} locally finite if each fuzzy point in an ordered fuzzy scalable structure space has an increasing FQ_X^{**} presemi λ neighbourhood that intersects only finitely many of the FQ_X^{**} presemi λ open sets in an increasing FQ_X^{**} presemi λ open cover.

Definition 3.14. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. Then $(X, \tau_X^*, Q_X^{**}, \leq)$ is said to be an upper (resp. lower) FQ_X^{**} presemi λ paracompact space if for each increasing FQ_X^{**} presemi λ open cover has an increasing (resp. decreasing) FQ_X^{**} locally finite FQ_X^{**} presemi λ subcover.

An ordered fuzzy scalable structure space $(X, \tau_X^*, Q_X^{**}, \leq)$ is said to be an FQ_X^{**} presemi λ paracompact space it is both upper and lower FQ_X^{**} presemi λ paracompact space.

Proposition 3.7. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure spaces and $\gamma \in I^X$. If $(X, \tau_X^*, Q_X^{**}, \leq)$ is FQ_X^{**} presemi λ paracompact space then $(\gamma, \tau_{X|\gamma}^*, Q_{X|\gamma}^{**}, \leq)$ is an upper FQ_X^{**} presemi λ paracompact space **P**roof

Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space and $\gamma \in I^X$ be an ordered fuzzy scalable structure subspaces of $(X, \tau_X^*, Q_X^{**}, \leq)$. Let $\{\eta_j\}_j \in J$ be an increasing FQ_X^{**} presemi λ open cover of $(\gamma, \tau_{X|\gamma}^*, Q_{X|\gamma}^{**}, \leq)$ and defined by $\{\eta_j = \mu_j \land \gamma : \mu_j$'s are FQ_X^{**} presemi λ open $\}$. Since $\{\mu_j\}$ is an increasing FQ_X^{**} presemi λ open cover in $(X, \tau_X^*, Q_X^{**}, \leq)$ that have increasing FQ_X^{**} locally finite FQ_X^{**} presemi λ subcover. Then, $\{\eta_j\}_j \in J$ is an increasing FQ_X^{**} presemi λ subcover.

Definition 3.15. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. A collection \mathcal{B} is said to be an increasing(resp. decreasing) FQ_X^{**} finite if each point of $(X, \tau_X^*, Q_X^{**}, \leq)$ lies in only finitely many members in an increasing (resp. decreasing) FQ_X^{**} presemi λ open cover.

Definition 3.16. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space. Then $(X, \tau_X^*, Q_X^{**}, \leq)$ is said to be an upper (resp. lower) FQ_X^{**} presemi λ metacompact space if for each increasing (resp. decreasing) FQ_X^{**} presemi λ open cover has an increasing (resp. decreasing) FQ_X^{**} presemi λ subcover.

An ordered fuzzy scalable structure space $(X, \tau_X^*, Q_X^{**}, \leq)$ is said to be an FQ_X^{**} presemi λ metacompact space it is both upper and lower FQ_X^{**} presemi λ metacompact space.

Definition 3.17. Let $(X, \tau_X^*, Q_X^{**}, \leq)$ be an ordered fuzzy scalable structure space and γ be any FQ_X^{**} open set in $(X, \tau_X^*, Q_X^{**}, \leq)$. Then $Q_X|\gamma^{**} = \{ \mu \land \gamma : \mu \in Q_X^{**} \}$ is a fuzzy scalable structure on γ and $(\gamma, \tau_X|\gamma^*, Q_X|\gamma^{**}, \leq)$ denote the FQ_X^{**} subspace of $(X, \tau_X^*, Q_X^{**}, \leq)$.

Proposition 3.8. Let $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ be any two ordered fuzzy scalable structure spaces. If $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ is an upper $FQ_{X_1}^{**}$ presemi λ metacompact space and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ is an upper $FQ_{X_2}^{**}$ presemi λ metacompact space then $X_1 \times X_2$ is an upper FQ_X^{**} presemi λ metacompact space. **Proof**

Let $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ and $(X_2, \tau_{X_2}^*, Q_{X_2}^{**}, \leq)$ be an upper $FQ_{X_1}^{**}$ presemi λ metacompact space and upper $FQ_{X_2}^{**}$ presemi λ metacompact space respectively. Let \mathcal{C} be an increasing FQ_X^{**} finite fuzzy point of $X_1 \times X_2$. For any $x \in X_1$, $\{x\} \times 1_{X_2}$ is an upper FQ_X^{**} presemi λ metacompact space. Then there exists an increasing FQ_X^{**} finite FQ_X^{**} presemi λ subcover $\{\mu_{i_j}: i \text{ and } j \in J\} \in \mathcal{C}$ and $\eta(x) = \bigvee_{j=1}^n \{\mu_{i_j}\}$ is the union of increasing finite elements. By the definition 3.8 there exists an increasing FQ_X^{**} presemi λ open set $\gamma(x) \times 1_{X_2}$, where $\{x\} \times 1_{X_2} \subset \gamma(x) \times 1_{X_2} \subset \eta(x)$.

Since $\gamma(x)$ is an increasing $FQ_{X_1}^{**}$ presemi λ open cover S of $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq), \gamma(x)$ have an increasing $FQ_{X_1}^{**}$ finite fuzzy point $FQ_{X_1}^{**}$ presemi λ subcover $\gamma(x_n) = \bigvee_{j=1}^n \{\omega(x_j)\}$ in $\eta(x_n)$. Consider \mathcal{C}_{x_n} as an increasing FQ_X^{**} presemi λ subcover for S. Let $(x, y) \in X_1 \times X_2$ be any point. Since $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ is an upper $FQ_{X_1}^{**}$ presemi λ metacompact space, there exist an increasing $FQ_{X_1}^{**}$ finite fuzzy point $x_1, x_2, \dots, x_n \in X_1$ lies in only finitely many member in $\gamma(x_n)$. Let δ be $FQ_{X_1}^{**}$ open set in $(X_1, \tau_{X_1}^*, Q_{X_1}^{**}, \leq)$ having increasing $FQ_{X_1}^{**}$ finite fuzzy point. Then $\delta \times 1_{X_1}$ having increasing finite fuzzy point that lies in only finitely many members in \mathcal{C}_{x_n} .

References

[1] Amsaveni. D, Meenakshi. S and Tamilmani. J, Fuzzy pre semi λ closed sets in fuzzy scalable structure space, International Journal of Applied and Pure Science and Agriculture, (2016), 66–79.

- [2] M.Burgin, Fuzzy continuity in Scalable Topology.
- [3] A. K. Katsaras, Ordered Fuzzy Topological Spaces Journal of Mathematical Analysis and Applications,84(1981), 44–58.
- [4] S. Carlson, Fuzzy topological spaces, Part 1: Fuzzy sets and fuzzy topologies, Early ideas and obstacles, *Rose-Hulman Institute of Technology*.
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–190.
- [6] S. J. John and T. Baiju, Metacompactness in L-topological spaces, Iranian J. fuzzy system,5(2008), 71–78.
- [7] M. K. Luo, Paracompactness in Fuzzy topological spaces, J. Math. Anal. Appl., 130(1988), 55-77.
- [8] L. Nachbin, Topology and Order Robert E. Krieger, Huntington, N.Y. (1976).
- [9] L. Nachbin, Surles espaces topologiques ordonnes, C.R. Acad. Sci. Paris 226(1948), 381 -382.
- [10] L. Nachbin, Surles espaces uniformes ordonnes, C.R. Acad. Sci. Paris 226(1948).
- [11] P.Smets, The degree of belief in a fuzzy event, Information Sciences, 25(1981), 1 19.
- [12] M.Surgeno, An introductory Survey of fuzzy control, *Information Sciences*, 36(1985), 59 - 83.
- [13] Tapas Kumar Mondal and S.K.Samanta, Topology of Interval valued Fuzzy Sets, Indian J. pure appl. Math, 30(1)(1999), 23-38.
- [14] L. A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.