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Abstract

A hypergraph H = (V, E) is said to be a Hausdorff hypergraph if for any two distinct vertices
u, v of V there exist hyperedges e1, e2 ∈ E such that u ∈ e1, v ∈ e2 and e1 ∩ e2 = ∅. In this
paper we derive sufficient conditions for minimal rank, maximal rank, non-rank preserving direct
products of two hypergraphs to be Hausdorff.
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1 Introduction

Hypergraphs are generalization of graphs, hence many of the definitions of graphs carry verbatim
to hypergraphs. The basic idea of the hypergraph concept is to consider such a generalization of a
graph in which any subset of a given set may be an edge rather than two-element subsets [9]. A
hypergraph [2] H is a pair (V, E), where V is a set of elements called nodes or vertices, and E is a set
of nonempty subsets of V called hyperedges or edges. Therefore, E is a subset of P (X)\{∅}, where
P (X) is the power set of X . In drawing hypergraphs, each vertex is a point in the plane and each
edge is a closed curve separating the respective subset from the remaining vertices. The cardinality
of the finite set V , is denoted by |V |, is called the order [8] of the hypergraph. The number of edges
is usually denoted by m or m(H) [8].

A simple hypergraph [1] is a hypergraph with the property that if ei and ej are hyperedges of
H with ei ⊆ ej , then i = j. Two vertices in a hypergraph are adjacent [9] if there is a hyperedge
which contains both vertices. Two hyperedges in a hypergraph are incident [9] if their intersection is
nonempty.

A k-uniform hypergraph [4] or a k-hypergraph is a hypergraph in which every edge consists of k
vertices. So a 2-uniform hypergraph is a graph, a 3-uniform hypergraph is a collection of unordered
triples, and so on. The rank [9] r(H) of a hypergraph is the maximum of the cardinalities of the edges
in the hypergraph. The co-rank [9] cr(H) of a hypergraph is the minimum of the cardinalities of a
hyperedge in the hypergraph. If r(H) = cr(H) = k, then H is k-uniform. The degree [7] dH(v) of a
vertex v in a hypergraph H is the number of edges of H that containing the vertex v. H is k-regular
if every vertex has degree k. The degree [3], d(e) of a hyperedge, e ∈ E is its cardinality |e|.

A vertex of a hypergraph which is incident to no edges is called an isolated vertex. [9] The degree
of an isolated vertex is trivially zero.

A hyperedge e of H with |e| = 1 is called a loop; more specifically a hyperedge e = {v} is a loop
at the vertex v. A vertex of degree 1 is called a pendant vertex .

A simple hypergraph H with |e| = 2 for each e ∈ E is a simple graph.

Let H = (V, E) be a hypergraph. Any hypergraph H ′ = (V ′, E ′) such that V ⊆ V ′ and E ⊆ E ′ is
called a subhypergraph [8] of H .
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Definition 1.1. [6] The cartesian product H1�H2 of two hypergraphs H1 = (V1, E1) and H2 =
(V2, E2) is a hypergraphH = (V, E) with vertex set V = V1×V2 and edge set E = {{u} × f : u ∈ V1, f ∈ E2}∪
{e× {v} : e ∈ E1, v ∈ V2} .

Definition 1.2. A hypergraph H = (V, E) is said to be a Hausdorff hypergraph if for any two distinct
vertices u and v of V there exist hyperedges e1, e2 ∈ E such that u ∈ e1 and v ∈ e2; and e1 ∩ e2 = ∅.

Theorem 1.3. Let H1 and H2 be two hypergraphs. Then the cartesian product H1�H2 of H1 and
H2 is a Hausdorff hypergraph.

Through out this paper we consider only simple hypergraph with no isolated vertices.

2 Minimal Rank Preserving Direct Product

One of the interesting product of hypergraph is minimal rank preserving direct product.

Definition 2.1. [5] The Minimal Rank Preserving Direct Product H1

`

× H2 of two hypergraphsH1 =
(V1, E1) andH2 = (V2, E2) is a hypergraph with vertex set V1×V2. A subset e = {(u1, v1), (u2, v2), . . . (ur, vr)}
of V1 × V2 is an edge of H1

`

× H2 if and only if

1. {u1, u2, . . . , ur} is an edge of H1 and {v1, v2, . . . , vr} is a subset of an edge of H2, or

2. {u1, u2, . . . , ur} is a subset of an edge of H1 and {v1, v2, . . . , vr} is an edge of H2.

Let e1 = {u1, u2, . . . , up} be an edge of H1 and e2 = {v1, v2, . . . , vq} be an edge of H2. Then
e = {(u1, v1), (u2, v2), . . . , (un, vn)} is an edge of H1

`

× H2 with cardinality min{|e1|, |e2|}.
In this paper, we discuss the Hausdorff property, that is the separation of any two distinct vertices

by nonadjacent edges of different product of hypergraphs H1 = (V1, E1) and H2 = (V2, E2). For the
sake of convenience we name the distinct vertices of product hypergraphs by (u1, v1) and (u2, v2).

Theorem 2.2. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. Then the minimal rank
preserving direct product H1

`

× H2 of H1 and H2 is Hausdorff, provided the degree of each edge of the
hypergraph H1(or H2) is different from 2.

Proof. Suppose the degree of each edge of the hypergraph H1 is different from 2. Consider any two
distinct vertices of H1

`

× H2. Let it be (u1, v1) and (u2, v2).

Case 1. u1 = u2, v1 6= v2
Let e = {u1 = u2, u3, u4, u5, . . . , un+1}. Note that |e| = n and by hypothesis either n = 1 or n ≥ 3.
If n = 1, then e1 = {(u1, v1)} and e2 = {(u1, v2)} are two nonadjacent edges of H1

`

× H2.
If n ≥ 3, then we have the following two subcases.

Subcase 1. There exists an edge f , with |f | = m, of H2 which contains both v1 and v2.
Let f = {v1, v2, . . . , vm}. Suppose n ≥ m. Then the edges e1 = {(u1, v1), (u3, v2), (u4, v3) . . . , (um+1, vm)}

and e2 = {(u1, v2), (u3, v3), (u4, v4), . . . , (um, vm), (um+1, v1)} ofH1

`

× H2 are nonadjacent and (u1, v1) ∈
e1, (u1, v2) ∈ e2.

Subcase 2. There exist no edge of H2 containing both v1 and v2.
Let f1 be an edge of H2 with |f1| = m such that v1 ∈ f1 and f2 be an edge of H2 with

|f2| = p such that v2 ∈ f2. Suppose n ≥ m ≥ p and |f1 ∩ f2| = k, 0 ≤ k ≤ (p − 1). Let
f1 = {v1, v3, . . . , vk+2, . . . , vm+1} and f2 = {w1, w2, . . . , wk, wk+1 . . . , wq} with w1 = v2. If k ≥ 1,
let w2 = v3, w3 = v4 . . . , wk+1 = vk+2.

Then the edges

e1 =

{

{(u1, v1)} if m = 1
{(u1, v1), (u3, v3), (u4, v4), . . . , (um+1, vm+1)} otherwise

and

e2 =







{(u1, w1)} if p = 1
{(u1, w1), (u4, w2)} if p = 2
{(u1, w1), (u3, w3), (u4, w4), (u5, w5), . . . , (up, wp), (up+1, w2)} otherwise

of H1

`

× H2 are nonadjacent and (u1, v1) ∈ e1, (u1, v2) ∈ e2.
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T -normal Graphs 3

Case 2. u1 6= u2, v1 6= v2

Subcase 1. There exists an edge e = {u1, u2, u3, . . . , un} of H1 containing both u1 and u2.
In this case n ≥ 3.
Suppose there exists an edge f = {v1, v2, . . . , vm} of H2 containing both v1 and v2.
Without loss of generality assume that n ≥ m. Set

e1 =

{

{(u1, v1), (u3, v2)} if m = 2
{(u1, v1), (u2, v3), (u3, v4), (u4, v5) . . . , (um−1, vm)(um, v2)} otherwise

and

e2 =

{

{(u2, v2), (u3, v1)} if m = 2
{(u1, vm), (u2, v2), (u3, v3), (u4, v4), (u5, v5), . . . , (um−1, vm−1), (um, v1)} otherwise

Then e1 and e2 are two nonadjacent edges of H1

`

× H2 such that (u1, v1) ∈ e1 and (u2, v2) ∈ e2.
Suppose there exists no edge of H2 containing both v1 and v2.
Let f1 be an edge of H2 with |f1| = p, containing v1 and f2 be an edge of H2 with |f2| = q,

containing v2. Suppose n ≥ p ≥ q. Consider a subset A of e containing u1 and u2 with cardinality
p. Let A = {u1, u2, . . . , uq, . . . , up} and let B = {u1, u2, . . . , uq}. Suppose |f1 ∩ f2| = k, where
0 ≤ k ≤ (q − 1). Let f1 = {v1, v3, . . . , vk+2, . . . , vp+1} and f2 = {w1, w2, . . . , wk, wk+1 . . . , wq} with
w1 = v2. If k ≥ 1, let w2 = v3, w3 = v4 . . . , wk+1 = vk+2.

Set

e1 =

{

{(u1, v1)} if p = 1
{(u1, v1), (u2, v3), (u3, v4) . . . , (up, vp+1)} otherwise

and

e2 =







{(u2, w1)} if q = 1
{(u2, w1), (u3, w2)} if q = 2
{(u1, wq), (u2, w1), (u3, w2), (u4, w3), . . . , (uq, wq−1)} otherwise

Then e1 and e2 are two nonadjacent edges of H1

`

× H2 such that (u1, v1) ∈ e1, (u2, v2) ∈ e2.

Subcase 2. There exists no edge of H1 containing both u1 and u2.
Let g1 be an edge of H1 with |g1| = n, containing u1 and g2 be an edge of H1 with |g2| = m

containing u2. Let n ≥ m and |g1 ∩ g2| = k, 0 ≤ k ≤ (m − 1). Let g1 = {u1, u3, . . . , uk+2, . . . , un+1}
and g2 = {x1, x2, . . . , xk, xk+1 . . . , xm} with x1 = u2 . If k ≥ 1, let x2 = u3, x3 = u4 . . . , xk+1 = uk+2.

Suppose there exists an edge f of H2 with |f | = p, containing both v1 and v2.
Then as in the proof of Subcase 1 of Case 2, we can prove that there exist two nonadjacent edges

e1 and e2 in H1
`

× H2 such that (u1, v1) ∈ e1 and (u2, v2) ∈ e2.

Suppose there exists no edge of H2 containing both v1 and v2.
Let f1 be an edge of H2 with |f1| = p, containing v1 and f2 an edge of H2 with |f2| = q, containing

v2. Assume n ≥ p ≥ q andm ≥ q. Let |f1∩f2| = l, 0 ≤ l ≤ (q−1). Let f1 = {v1, v3, . . . , vl+2, . . . , vp+1}
and f2 = {y1, y2, . . . , yl, yl+1 . . . , yq} with y1 = v2. If l ≥ 1, let y2 = v3, y3 = v4 . . . , yl+1 = vl+2.

Set an edge e1 of H1
`

× H2 with cardinality p as,

e1 =

{

{(u1, v1)} if p = 1
{(u1, v1), (u3, v3), (u4, v4), . . . , (up, vp), (up+1, vp+1)} otherwise

and an edge e2 with cardinality q as,

e2 =







{(x1, y1)} if q = 1
{(x1, y1), (x3, y2)} if q = 2
{(x1, y1), (x2, y3), (x3, y4) . . . , (xq−1, yq), (xq, y2)} otherwise

Then e1 and e2 are two nonadjacent edges of H1

`

× H2 such that (u1, v1) ∈ e1, (u2, v2) ∈ e2.

The other inequalities between n,m, p and q in cases 1 and 2 can be dealt in a similar way.
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Remark 2.3. From the proof of Theorem 2.2 we can conclude the following
For any two hypergraphs H1 = (V1, E1) and H2 = (V2, E2) and for any two distinct vertices (u1, v1)

and (u2, v2) of H1

`

× H2, if there exists an edge e of H1 containing u1 or u2 or both and an edge f of
H2 containing v1 or v2 or both, then there exists two nonadjacent edges e1 and e2 in H1

`

× H2 such
that (u1, v1) ∈ e1 and (u2, v2) ∈ e2, provided |e| 6= 2 or |f | 6= 2.

Remark 2.4. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. If both H1 and H2 contain
edges of degree 2, then the minimal rank preserving direct product H1

`

× H2 of H1 and H2 need not
be Hausdorff.(See Figure 1.)
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Figure 1: The minimal rank preserving direct product of H1 and H2.

Remark 2.5. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. If the degree of each vertex
in any edge of degree 2 of the hypergraph H1(or H2) is different from 1, then the minimal rank
preserving direct product H1

`

× H2 of H1 and H2 is Hausdorff. (See Figure 2).
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Figure 2: The minimal rank preserving direct product of H1 and H2.

Theorem 2.6. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. Then the minimal rank
preserving direct product H1

`

× H2 of H1 and H2 is Hausdorff provided degree of each vertex in any
edge of degree 2 of the hypergraph H1(or H2) is different from 1.

Proof. Suppose the degree of each vertex of degree 2 of the hypergraph H1 is different from 1.
Let(u1, v1) and (u2, v2), be two distinct vertices of H1

`

× H2..
By remark 2.3 we need only to consider the cases where the edges considered are of degree 2.

Case 1. u1 = u2, v1 6= v2
Let e = {u1 = u2, u3} be an edge of H1 and f be an edge of H2 containing v1. By hypothesis of

the theorem there exists another edge h containing u1 and a vertex x different from u3.
If v2 ∈ f , then f = {v1, v2}. In this case the edges e1 = {(u1, v1), (u3, v2)} and e2 = {(u1, v2), (x, v1)}

of H1
`

× H2 are nonadjacent and (u1, v1) ∈ e1 and (u1, v2) ∈ e2.
If v2 /∈ f , then let f = {v1, v3}, where v3 6= v2 and let g = {w1 = v2, w2} be an edge of H2

containing v2. Then the edges e1 = {(u1, v1), (u3, v3)} and e2 = {(u1, w1), (x,w2)} of H1

`

× H2 are
nonadjacent and (u1, v1) ∈ e1 and (u1, v2) ∈ e2.

Case 2. u1 6= u2, v1 6= v2

Subcase 1. There exists an edge e = {u1, u2} of H1 containing both u1 and u2.
Suppose there exists an edge f = {v1, v2} of H2 containing both v1 and v2.
By hypothesis of the theorem there exists an edge h1 containing u1 and a vertex x different from u2

and another edge h2 containing u2 and a vertex y different from u1. Then e1 = {(u1, v1), (x, v2)} and
e2 = {(y, v1), (u2, v2)} are two nonadjacent edges of H1

`

× H2 such that (u1, v1) ∈ e1 and (u2, v2) ∈ e2.
Suppose there exist no edge of H2 containing both v1 and v2.
Let f = {v1, v3} and g = {w1 = v2, w2} be two edges of H2. Set e1 = {(u1, v1), (u2, v3)} and

e2 = {(u1, w2), (u2, w1)}. Then e1 and e2 are two nonadjacent edges of H1

`

× H2 and (u1, v1) ∈ e1,
(u2, v2) ∈ e2.

Subcase 2. There exists no edge of H1 containing both u1 and u2.
Let e = {u1, u3} and g = {x1 = u2, x2} be two edges of H1

Suppose there exists an edge of H2 containing both v1 and v2.
Then as in the proof of Subcase 1 of Case 2, we can prove that there exist two nonadjacent edges

e1 and e2 in H1

`

× H2 such that (u1, v1) ∈ e1 and (u2, v2) ∈ e2.
Suppose there exist no edge of H2 containing both v1 and v2.
Let f = {v1, v3} and h = {y1 = v2, y2} be two edges of H2.
Suppose e∩ g 6= ∅, then u3 = x2. By hypothesis of the theorem there exists an edge g1 containing

u1 and a vertex x different from u3. Then e1 = {(u1, v1), (x, v3)} and e2 = {(x1, y1), (x2, y2)} are
two nonadjacent edges of H1

`

× H2 and (u1, v1) ∈ e1, (u2, v2) ∈ e2. Suppose e ∩ g = ∅, then
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e1 = {(u1, v1), (u3, v3)} and e2 = {(x1, y1), (x2, y2)} are two nonadjacent edges of H1

`

× H2 and
(u1, v1) ∈ e1, (u2, v2) ∈ e2.

Hence the theorem.

Let H1 and H2 be two hypergraphs, if all the edges of H1 or H2 are loops, then all the edges of
H1

`

× H2 are loops. As a consequence we have the following proposition.

Proposition 2.7. Let H1 and H2 be two hypergraphs. If all the edges of one of them are loops, then
the minimal rank preserving direct product H1

`

× H2 of H1 and H2 is Hausdorff.

Definition 2.8. The Normal product [5] H1

⌣

⊠ H2 of two hypergraphs H1 = (V1, E1) and H2 =
(V2, E2) is a hypergraph with vertex set V1×V2 and a subset e = {(u1, v1), (u2, v2), (u3, v3), . . . , (un, vn)}
of V1 × V2 is an edge of H1

⌣

⊠ H2 if,

1. {u1, u2, . . . , un} is an edge of H1 and v1 = v2 = . . . = vn ∈ V2, or

2. {v1, v2, . . . , vn} is a subset of an edge of H2 and u1 = u2 = . . . = un ∈ V1, or

3. {u1, u2, . . . , un} is an edge of H1 and {v1, v2, . . . , vn} is a subset of an edge of H2, or

4. {v1, v2, . . . , vn} is an edge of H2 and {u1, u2, . . . , un} is a subset of an edge of H1.

Remark 2.9. Cartesian product H1�H2 of two hypergraphs H1 and H2 is a subhypergraph of their
normal product H1

⌣

⊠ H2 with V (H1�H2) = V (H1

⌣

⊠ H2).

Theorem 2.10. Let H1 and H2 be two hypergraphs. Then the normal product H1

⌣

⊠ H2 of H1 and
H2 is Hausdorff.

3 Maximal Rank Preserving Direct Product

Definition 3.1. [5] The Maximal Rank Preserving Direct Product H1
a

× H2 of two hypergraphsH1 =
(V1, E1) andH2 = (V2, E2) is a hypergraph with vertex set V1×V2. A subset e = {(u1, v1), (u2, v2), . . . , (ur, vr)}
of V1 × V2 is an edge of H1

a

× H2 if,

1. {u1, u2, . . . , ur} is an edge of H1 and there is an edge f ∈ E2 of H2 such that {v1, v2, . . . , vr} is
a multiset2 of elements of f , and f ⊆ {v1, v2, . . . , vr}, or

2. {v1, v2, . . . , vr} is an edge of H2 and there is an edge e ∈ E1 of H1 such that {u1, u2, . . . , ur} is
a multiset of elements of e, and e ⊆ {u1, u2, . . . , ur} .

Let e1 = {u1, u2, . . . , up} be an edge of H1 and e2 = {v1, v2, . . . , vq} be an edge of H2. Then
e = {(u1, v1), (u2, v2), . . . , (un, vn)} is an edge of H1

a

× H2 with cardinality max |e1|, |e2|.

Remark 3.2. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. Then the maximal rank
preserving direct product H1

a

× H2 of H1 and H2 is need not be Hausdorff if one of the hypergraph
contains a loop.(See Figure 3.)
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Figure 3: The maximal rank preserving direct product of H1 and H2.

2A multiset is an unordered collection of objects (called the elements) in which, unlike a standard (Cantorian) set,
elements are allowed to repeat. In other words a multiset is a set in which elements may belong more than once.
{1, 1, 1, 2, 3, 3} is a multiset.
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Theorem 3.3. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs with no loops. Then the
maximal rank preserving direct product H1

a

× H2 of H1 and H2 is Hausdorff provided degree of each
edge of the hypergraph H1(or H2) is different from 2.

Proof. Suppose the degree of each edge of the hypergraph H1 is different from 2.
Consider two distinct vertices (u1, v1) and (u2, v2) of H1

a

× H2.

Case 1. u1 = u2, v1 6= v2
Let e = {u1, u3, u4 . . . un+1} be an edge of H1 containing u1 with |e| = n.

Subcase 1. There exists an edge f , with |f | = m, of H2 which contains both v1 and v2.
Let f = {v1, v2, . . . , vm}. Without loss of generality assume that n ≥ m.
If n = m, then e1 = {(u1, v1), (u3, v2), (u4, v3) . . . , (un+1, vm)} and e2 = {(u1, v2), (u3, v3), (u4, v4) . . . ,

(un, vm), (un+1, v1)} are nonadjacent edges of H1

a

× H2 such that (u1, v1) ∈ e1 and (u1, v2) ∈ e2.
If n > m, then the edges e1 = {(u1, v1), (u3, v2), (u4, v3) . . . , (um+1, vm), (um+2, vm), . . . , (un+1, vm)}

and e2 = {(u1, v2), (u3, v3), (u4, v4), . . . , (um, vm), (um+1, v1), (um+2, v1) . . . , (un+1, v1)} of H1

a

× H2

are nonadjacent and (u1, v1) ∈ e1, (u1, v2) ∈ e2.

Subcase 2. There exist no edge of H2 containing both v1 and v2.
Let f1 be an edge of H2 with |f1| = p, containing v1 and f2 be an edge of H2 with |f2| = q,

containing v2.
Assume p ≥ q and |f1 ∩ f2| = k, 0 ≤ k ≤ (q − 1). Let f1 = {v1, v3, . . . , vk+2, . . . , vp+1} and

f2 = {w1, w2, . . . , wk+1, . . . , wq} with w1 = v2. If k ≥ 1, let w2 = v3, w3 = v4, . . . , wk+1 = vk+2.
If n = p = q, then e1 = {(u1, v1), (u3, v3), (u4, v4) . . . , (un+1, vn+1)} and e2 = {(u1, w1), (u3, w3),

(u4, w4), (u4, w4), . . . , (un, wn), (un+1, w2)} are nonadjacent edges of H1

a

× H2 such that (u1, v1) ∈ e1
and (u1, v2) ∈ e2.

If n = p > q, then the edges e1 = {(u1, v1), (u3, v3), (u4, v4) . . . , (un+1, vn+1)} and

e2 =







{(u1, w1), (u3, w1), (u4, w2), (u5, w1), (u6, w1), . . . , (un+1, w1)} if q = 2
{(u1, w1), (u3, w3), (u4, w4), (u5, w5), . . . , (uq, wq), (uq+1, w2), (uq+2, w1),
(uq+3, w1), . . . , (un+1, w1)} if q 6= 2

of H1

a

× H2 are nonadjacent and (u1, v1) ∈ e1, (u1, v2) ∈ e2.
If n > p, then the edges e1 = {(u1, v1), (u3, v3), (u4, v4) . . . , , (up+1, vp+1), (up+2, v1), . . . , (un+1, v1)}

and

e2 =







{(u1, w1), (u3, w1), (u4, w2), (u5, w1), (u6, w1), . . . , (un+1, w1)} if q = 2
{(u1, w1), (u3, w3), (u4, w4), (u5, w5), . . . , (uq, wq), (uq+1, w2), (uq+2, w1),
(uq+3, w1), . . . , (un+1, w1)} if q 6= 2

are nonadjacent edges of H1

a

× H2 and (u1, v1) ∈ e1, (u1, v2) ∈ e2.

Case 2. u1 6= u2 ,v1 6= v2

Subcase 1. There exists an edge e of H1 with |e| = n, containing both u1 and u2.
Let e = {u1, u2, . . . , un}
Suppose there exists an edge f of H2 with |f | = m, containing both v1 and v2. Let f =

{v1, v2, . . . , vm}.
If n = m, then the edges e1 = {(u1, v1), (u2, v3), (u3, v4), (u4, v5), . . . , (un−1, vn), (un, v2)} and

e2 =

{

{(u1, v3), (u2, v2), (u3, v1)} if m = 3
{(u2, v2), (u3, v1), (u4, v3), (u5, v4), (u6, v5), . . . , (un, vm−1), (u1, vm)} if m 6= 3

of H1

a

× H2 are nonadjacent and (u1, v1) ∈ e1, (u2, v2) ∈ e2.
If n > m, then the edges

e1 =







{(u1, v1), (u2, v1), (u3, v2), (u4, v2), . . . , (un, v2)} if m = 2
{(u1, v1), (u2, v3), (u3, v4), (u4, v5), . . . , (um−1, vm),
(um, v2), (um+1, v2), (um+2, v2), . . . , (un, v2)} if m 6= 2
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and

e2 =















{(u1, v2), (u2, v2), (u3, v1), (u4, v1), (u5, v1) . . . , (un, v1)} if m = 2
{(u1, v3), (u2, v2), (u3, v1), (u4, v1), (u5, v1) . . . , (un, v1)} if m = 3
{(u2, v2), (u3, v1), (u4, v3), (u5, v4), (u6, v5), . . . , (um, vm−1),
(u1, vm), (um+1, v1), (um+2, v1) . . . , (un, v1)} otherwise

of H1

a

× H2 are nonadjacent and (u1, v1) ∈ e1; and (u2, v2) ∈ e2.
Suppose there exists no edge of H2 containing both v1 and v2.
Let f1 be an edge of H2 with |f1| = p such that v1 ∈ f1 and f2 be an edge of H2 with |f2| = q

such that v2 ∈ f2.
Assume p ≥ q and |f1 ∩ f2| = k, 0 ≤ k ≤ (q − 1). Let f1 = {v1, v3, v4 . . . , vk+2, . . . , vp+1} and

f2 = {w1, w2, . . . , wk+1, . . . , wq} with w1 = v2. If k ≥ 1, let w2 = v3, w3 = v4, . . . , wk+1 = vk+2.
If n = p = q, then the edges e1 = {(u1, v1), (u2, v3), (u3, v4) . . . , (un, vn+1)} and e2 = {(u2, w1), (u3, w2),

(u4, w3), . . . , (un, wn−1), (u1, wn)} of H1

a

× H2 are nonadjacent and (u1, v1) ∈ e1 and (u2, v2) ∈ e2.
If n = p > q, then e1 = {(u1, v1), (u2, v3), (u3, v4) . . . , (un, vn+1)} and e2 = {(u2, w1), (u3, w2),

(u4, w3), . . . , (uq, wq−1)(u1, wq), (uq+1, w1), (uq+2, w1), . . . , (un, w1)} are nonadjacent edges ofH1

a

× H2

such that (u1, v1) ∈ e1 and (u2, v2) ∈ e2.
If n > p, then the edges e1 = {(u1, v1), (u2, v3), (u3, v4) . . . , (up, vp+1), (up+1, v1), (up+2, v1), . . . , (un, v1)}

and e2 = {(u2, w1), (u3, w2), (u4, w3), . . . , (uq, wq−1), (u1, wq), (uq+1, w1), (uq+2, w1), . . . , (un, w1)} of
H1

a

× H2 are nonadjacent and (u1, v1) ∈ e1; and (u2, v2) ∈ e2.

Subcase 2. There exists no edge of H1 containing both u1 and u2.
Let g1 be an edge of H1 with |g1| = n, containing u1 and g2 be an edge of H1 with |g2| = m

containing u2. Without loss of generality assume that n ≥ m. Let |g1 ∩ g2| = k, 0 ≤ k ≤ (m− 1). Let
g1 = {u1, u3, u4, . . . , uk+2, . . . , un+1} and g2 = {x1, x2, x3, . . . , xk+1, . . . , xm} with x1 = u2. If k ≥ 1,
let x2 = u3, x3 = u4, . . . , xk+1 = uk+2.

Suppose there exists an edge f of H2 with |f | = p, containing both v1 and v2.
Then as in the proof of Subcase 1 of Case 2 , we can prove that there exist two nonadjacent edges

e1 and e2 of H1

a

× H2 such that (u1, v1) ∈ e1 and (u2, v2) ∈ e2.
Suppose there exists no edge of H2 containing both v1 and v2.
Let f1 be an edge of H2 with |f1| = p such that v1 ∈ f1 and f2 be an edge of H2 with |f2| = q

such that v2 ∈ f2.
Assume p ≥ q and |f1 ∩ f2| = t, 0 ≤ t ≤ (q − 1). Let f1 = {v1, v3, v4, . . . , vt+2, . . . , vp+1} and

f2 = {y1, y2, . . . , yt+1, . . . , yq} with y1 = v2. If t ≥ 1, let y2 = v3, y3 = v4, . . . , yt+1 = vt+2. Then
(u2, v2) = (x1, y1).

If n = m, then we have to consider four cases n = p, m = q; n > p, m = q; n = p, m > q and
n > p, m > q.

Suppose n = p, m = q. Then the edges e1 = {(u1, v1), (u3, v3), (u4, v4), . . . , (un+1, vn+1)} and
e2 = {(x1, y1), (x2, y3), (x3, y4), (x4, y5), . . . , (xm−1, ym), (xm, y2)} of H1

a

× H2 are nonadjacent and
(u1, v1) ∈ e1, (x1, y1) ∈ e2.

Suppose n = p, m > q. Then e1 = {(u1, v1), (u3, v3), (u4, v4), . . . , (un+1, vn+1)} and

e2 =







{(x1, y1), (x2, y1), (x3, y2), (x4, y2), . . . , (xm−1, y2), (xm, y2)} if q = 2
{(x1, y1), (x2, y3), (x3, y4), (x4, y5), . . . , (xq−1, yq), (xq, y2),
(xq+1, y2), (xq+2, y2), . . . , (xm, y2)} if q 6= 2

Suppose n > p, m = q. Then the edges e1 = {(u1, v1), (u3, v3), . . . , (up, vp), (up+1, vp+1), (up+2, v1),
(up+3, v1) . . . , (un+1, v1)} and e2 = {(x1, y1), (x2, y3), (x3, y4), (x4, y5), . . . , (xm−1, ym), (xm, y2)} ofH1

a

×
H2 are nonadjacent and (u1, v1) ∈ e1, (x1, y1) ∈ e2.

Suppose n > p, m > q. Then the edges

e1 =







{(u1, v1), (u3, v3), (u4, v1), (u5, v1), . . . , (un+1, v1)} if p = 2
{(u1, v1), (u3, v3), . . . , (up, vp), (up+1, vp+1), (up+2, v1),
(up+3, v1) . . . , (un+1, v1)} if p 6= 2

e2 =







{(x1, y1), (x2, y1), (x3, y2), (x4, y2), . . . , (xm, y2)} if q = 2
{(x1, y1), (x2, y3), (x3, y4), (x4, y5), . . . , (xq−1, yq),
(xq , y2), (xq+1, y2), (xq+2, y2), . . . , (xm, y2)} if q 6= 2
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of H1

a

× H2 are nonadjacent and (u1, v1) ∈ e1, (x1, y1) ∈ e2.
Similarly, if n > m, we can show that there exists two nonadjacent edges e1 and e2 in H1

a

× H2

such that (u1, v1) ∈ e1, (x1, y1) ∈ e2 .

The other inequalities between n,m, p and q in cases 1 and 2 can be dealt in a similar way.

Remark 3.4. As in the minimal rank preserving direct product here also we have, for any two
hypergraphs H1 = (V1, E1) and H2 = (V2, E2) with no loops and for any two distinct vertices (u1, v1)
and (u2, v2) of H1

a

× H2, if there exists an edge e of H1 containing u1 or u2 or both and an edge f of
H2 containing v1 or v2 or both, then there exists two nonadjacent edges e1 and e2 in H1

a

× H2 such
that (u1, v1) ∈ e1 and (u2, v2) ∈ e2, provided |e| 6= 2 or |f | 6= 2.

Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs with no loops. The edges of H1

a

× H2

and H1

`

× H2 corresponding to the edges of degree 2 in H1 and H2 are same. Hence as in the case of
minimal rank preserving direct product, H1

a

× H2 need not be Hausdorff if both the graphs contains
edges of degree 2 (See Figure 1) and a similar result of Theorem 2.6 also holds in the case of maximal
rank preserving direct product.

Theorem 3.5. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs with no loops. Then the
maximal rank preserving direct product H1

a

× H2 of H1 and H2 is Hausdorff provided degree of each
vertex in any edge of degree 2 of the hypergraph H1(or H2) is different from 1.

Let H1 and H2 be two hypergraphs, if all the edges of both H1 and H2 are loops, then all the
edges of H1

a

× H2 are loops. As a consequence we have the following proposition.

Proposition 3.6. Let H1 and H2 be two hypergraphs. If all the edges of both of them are loops, then
the maximal rank preserving direct product H1

a

× H2 of H1 and H2 is Hausdorff.

Definition 3.7. The Strong product [5] H1

⌢

⊠ H2 of two hypergraphs H1 = (V1, E1) and H2 = (V2, E2)
is a hypergraph with vertex set V1 × V2 and a subset e = {(u1, v1), (u2, v2), (u3, v3), . . . , (un, vn)} of
V1 × V2 is an edge of H1

⌢

⊠ H2 if,

1. {u1, u2, . . . , un} is an edge of H1 and v1 = v2 = . . . = vr ∈ V2, or

2. {v1, v2, . . . , vn} is a subset of an edge of H2 and u1 = u2 = . . . = un ∈ V1, or

3. {u1, u2, . . . , ur} is an edge of H1 and there is an edge f ∈ E2 of H2 such that {v1, v2, . . . , vr} is
a multiset of elements of f , and f ⊆ {v1, v2, . . . , vr}, or

4. {v1, v2, . . . , vr} is an edge of H2 and there is an edge f ∈ E1 of H1 such that {u1, u2, . . . , ur} is
a multiset of elements of f , and f ⊆ {u1, u2, . . . , ur}.

Remark 3.8. E(H1

⌢

⊠ H2) = E(H1�H1) ∪ E(H1

a

× H2). Thus it is immediate that if H1 and H2

are two Hausdorff hypergraphs then their strong product is Hausdorff.

4 Non-rank Preserving Direct Product

Definition 4.1. [5] The Non-rank preserving direct product H1
∼

× H2 of two hypergraphs H1 =
(V1, E1) and H2 = (V2, E2) is a hypergraph with vertex set V1×V2 and edge set

{

{(u, v)}∪ ((e−{u})×

(f − {v}))/u ∈ e ∈ E1, v ∈ f ∈ E2
}

.

Remark 4.2. If H1 is a hypergraph with all of its edges are loops then for any hypergraph H2, the
edges of H1

∼

× H2 are loops. Hence it is Haudorff.

Theorem 4.3. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. Suppose |e| 6= 2 for any
e ∈ E1 and H2 is 2-uniform, then H1

∼

× H2 is Hausdorff.

Proof. Consider two distinct vertices (u1, v1) and (u2, v2) of H1
∼

× H2

Case 1. u1 = u2, v1 6= v2
Let e be an edge of H1 with |e| = n, such that u1 ∈ e. If e is the loop {u1}, then {(u1, v1)} and

{(u2, v2)} are nonadjacent edges of H1
∼

× H2. Otherwise let e = {u1, u3, u4, . . . un+1}.
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Subcase 1. f = {v1, v2} is an edge of H2.
Now, the edges e1 = {(u1, v1)}∪

(

{u3, u4, . . . , un+1}×{v2}
)

and e2 = {(u1, v2)}∪
(

{u3, u4, . . . , un+1}×

{v1}
)

of H1
∼

× H2 are nonadjacent and (u1, v1) ∈ e1, (u1, v2) ∈ e2.

Subcase 2. There exists no edge of H2 containing both v1 and v2.
Let f1 be an edge of H2 such that v1 ∈ f1 and f2 be an edge of H2 such that v2 ∈ f2. Let

f1 = {v1, v} and f2 = {v2, w}. Then the edges e1 = {(u4, v)} ∪
(

{u1, u3, u5, u6 . . . , un+1} × {v1}
)

and e2 = {(u3, w)} ∪
(

{u1, u4, u5 . . . , un+1} × {v2}
)

of H1
∼

× H2 are nonadjacent and (u1, v1) ∈ e1,
(u1, v2) ∈ e2.

Case 2. u1 6= u2, v1 6= v2

Subcase 1. There exists an edge e of H1 with |e| = n, containing both u1 and u2, where n ≥ 3.
Let e = {u1, u2, u3 . . . , un}
Assume that f = {v1, v2} is an edge of H2. Then the edges e1 = {(un, v2)}∪

(

{u1, u2, . . . , un−1}×

{v1}
)

and e2 = {(un, v1)} ∪
(

{u1, u2, . . . , un−1} × {v2}
)

of H1
∼

× H2 are nonadjacent and (u1, v1) ∈
e1, (u2, v2) ∈ e2.

Suppose there exists no edge of H2 containing both v1 and v2. Let f1 be an edge of H2 such that
v1 ∈ f1 and f2 be an edge of H2 such that v2 ∈ f2. Suppose f1 = {v1, v} and f2 = {v2, w}. Then
the edges e1 = {(u1, v1)} ∪

(

{u2, u3, . . . , un} × {v}
)

and e2 = {(u1, w)} ∪
(

{u2, u3, . . . , un} × {v2}
)

of
H1

∼

× H2 are nonadjacent and (u1, v1) ∈ e1, (u2, v2) ∈ e2.

Subcase 2. There exists no edge of H1 containing both u1 and u2.
Let g1 be an edge of H1 with |g1| = n, containing u1 and g2 be an edge of H1 with |g2| =

m, containing u2. Let us suppose that n ≥ m. If n = 1, then there is nothing to prove. So
assume n > 1. Suppose |g1 ∩ g2| = k, 0 ≤ k ≤ (m − 1). Let g1 = {u1, u3, u4, . . . , un+1} and
g2 = {w1, w2, . . . wk . . . , wm} with w1 = u2. If k ≥ 1, let w2 = u3, w3 = u4, . . . wk+1 = uk+2.

Assume that f = {v1, v2} is an edge ofH2. Note that, the edges e1 = {(u1, v1)}∪
(

{u3, u4, . . . , un+1}×

{v2}
)

and e2 = {(w1, v2)} ∪
(

{w2, w3, . . . , wm}× {v1}
)

of H1
∼

× H2 are nonadjacent and (u1, v1) ∈ e1,
(u2, v2) ∈ e2.

Suppose there exists no edge of H2 containing both v1 and v2.
Suppose f1 = {v1, v} and f2 = {v2, w} are two edges of H2. Then the edges e1 = {(u4, v)} ∪

(

{u1, u3, u4, . . . , un+1} × {v1}
)

and e2 = {(w2, w)} ∪
(

{w1, w3, w4, . . . , wm} × {v2}
)

of H1
∼

× H2 are
nonadjacent and (u1, v1) ∈ e1, (u2, v2) ∈ e2.

Hence the theorem.

Theorem 4.4. Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. If H1 is Hausdorff and for
any vertex v ∈ V1, if there exists distinct edges e and f containing v such that e ∩ f = {v}, then
H1

∼

× H2 is Hausdorff.

Proof. Consider two distinct vertices (u1, v1) and (u2, v2) of H1
∼

× H2.

Case 1. v1 = v2
In this case u1 6= u2. As H1 is Hausdorff, there exist nonadjacent edges e1 and e2 in H such that

u1 ∈ e1 and u2 ∈ e2. Let |e1| = n and |e2| = m. If n = 1 or m = 1, then there is nothing to prove.
So assume that n,m ≥ 2. Let e1 = {u1, u3, . . . , un+1} and e2 = {w1, w2, . . . , wm} with w1 = u2. Let
g be an edge of H2 with |g| = p, containing v1. Suppose g = {v1, v3, v4 . . . , vp+1}. Such an edge
exists by hypothesis. Then the edges e = {(u1, v1)} ∪

(

{u3, u4, . . . , un+1} × {v3, v4, . . . , vp+1}
)

and

f = {(w1, v1)}∪
(

{w2, w3, . . . , wm}×{v3, v4, . . . , vp+1}
)

of H1
∼

× H2 are nonadjacent and (u1, v1) ∈ e,
(u2, v1) ∈ f.

Case 2. v1 6= v2

Subcase 1. u1 = u2

By hypothesis there exist edges e and f containing u1 such that e∩f = {u1}. Let |e| = n, |f | = m.
Suppose e = {x1, x2, . . . , xn−1, u1} , f = {y1, y2, . . . , ym−1, u1}.

Suppose there exists an edge g with |g| = p of H2 containing both v1 and v2. Let us suppose
that g = {v1, v2, . . . , vp}. Now the edges e1 = {(u1, v1)} ∪

(

{x1, x2, . . . , xn−1} × {v2, v3, . . . , vp}
)

and
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e2 = {(u1, v2)}∪
(

{y1, y2, . . . , ym−1}× {v1, v3, . . . , vp}
)

of H1
∼

× H2 are nonadjacent and (u1, v1) ∈ e1,
(u1, v2) ∈ e2.

Suppose there exist no edge of H2 containing both v1 and v2. Let f1 be an edge of H2 with
|f1| = p such that v1 ∈ f1 and f2 be an edge of H2 with |f2| = q such that v2 ∈ f2. Suppose
f1 = {v1, v3, v4 . . . , vp+1} and f2 = {w1, w2, . . . , wq} with w1 = v2. Now the edges e1 = {(u1, v1)} ∪
(

{x1, x2, . . . , xn−1}×{v3, v4, . . . , vp+1}
)

and e2 = {(u1, w1)}∪
(

{y1, y2, . . . , ym−1}×{w2, w3, . . . , wq}
)

of H1
∼

× H2 are nonadjacent and (u1, v1) ∈ e1, (u1, v2) ∈ e2.

Subcase 2. u1 6= u2

As H1 is Hausdorff, there exist nonadjacent edges e1 and e2 such that u1 ∈ e1 and u2 ∈ e2. Let
|e1| = n and |e2| = m. Suppose e1 = {u1, u3, u4 . . . , un+1} and e2 = {w1, w2, . . . , wm} with w1 = u2.

Suppose there exists an edge g with |g| = p of H2 containing both v1 and v2. Let us suppose
g = {v1, v2, . . . , vp}. Then the edges e = {(u1, v1)} ∪

(

{u3, u4, . . . , un+1} × {v2, v3, . . . , vp}
)

and

f = {(w1, v2)} ∪
(

{w2, w3, . . . , wm} × {v1, v3, . . . , vp}
)

of H1
∼

× H2 are nonadjacent and (u1, v1) ∈ e,
(u2, v2) ∈ f.

Suppose there exist no edge of H2 containing both v1 and v2. Let g1 be an edge of H2 with |g1| = p
such that v1 ∈ g1 and g2 be an edge ofH2 with |g2| = q such that v2 ∈ g2. Let g1 = {v1, v3, v4 . . . , vp+1}
and g2 = {y1, y2, . . . , yq} with y1 = v2. Then the edges e = {(u1, v1)} ∪

(

{u3, u4, . . . , un+1} ×

{v3, v4, . . . , vp+1}
)

and f = {(w1, y1)} ∪
(

{w2, w3, . . . , wm} × {y2, y3, . . . , yq}
)

of H1
∼

× H2 are nonad-
jacent and (u1, v1) ∈ e, (u2, v2) ∈ f.

5 Conclusion

In this paper we have discussed conditions under which minimal rank, maximal rank , non-rank,
preserving direct product of two hypergraphs to be Hausdorff. It is proved that normal product and
strong product of any two hypergraphs is always Hausdorff.
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