Hausdorff Property of Minimal Rank, Maximal Rank and Non-Rank Preserving Direct Product of Hypergraphs

Seena V^{1,*}, Raji Pilakkat¹

¹Department of Mathematics, University of Calicut, Malappuram, Kerala-673 635, India seenavclt0gmail.com, rajiunical0rediffmail.com

Abstract

A hypergraph $H = (V, \mathcal{E})$ is said to be a *Hausdorff hypergraph* if for any two distinct vertices u, v of V there exist hyperedges $e_1, e_2 \in \mathcal{E}$ such that $u \in e_1, v \in e_2$ and $e_1 \cap e_2 = \emptyset$. In this paper we derive sufficient conditions for minimal rank, maximal rank, non-rank preserving direct products of two hypergraphs to be Hausdorff.

Mathematics Subject Classification: 05C65

Keywords: Hausdorff hypergraph, Minimal rank preserving direct product, Maximal rank preserving direct product, Non-rank preserving direct product.

1 Introduction

Hypergraphs are generalization of graphs, hence many of the definitions of graphs carry verbatim to hypergraphs. The basic idea of the hypergraph concept is to consider such a generalization of a graph in which any subset of a given set may be an edge rather than two-element subsets [9]. A hypergraph [2] H is a pair (V, \mathcal{E}) , where V is a set of elements called nodes or vertices, and \mathcal{E} is a set of nonempty subsets of V called hyperedges or edges. Therefore, \mathcal{E} is a subset of $P(X) \setminus \{\emptyset\}$, where P(X) is the power set of X. In drawing hypergraphs, each vertex is a point in the plane and each edge is a closed curve separating the respective subset from the remaining vertices. The cardinality of the finite set V, is denoted by |V|, is called the order [8] of the hypergraph. The number of edges is usually denoted by m or m(H) [8].

A simple hypergraph [1] is a hypergraph with the property that if e_i and e_j are hyperedges of H with $e_i \subseteq e_j$, then i = j. Two vertices in a hypergraph are *adjacent* [9] if there is a hyperedge which contains both vertices. Two hyperedges in a hypergraph are *incident* [9] if their intersection is nonempty.

A k-uniform hypergraph [4] or a k-hypergraph is a hypergraph in which every edge consists of k vertices. So a 2-uniform hypergraph is a graph, a 3-uniform hypergraph is a collection of unordered triples, and so on. The rank [9] r(H) of a hypergraph is the maximum of the cardinalities of the edges in the hypergraph. The co-rank [9] cr(H) of a hypergraph is the minimum of the cardinalities of a hyperedge in the hypergraph. If r(H) = cr(H) = k, then H is k-uniform. The degree [7] $d_H(v)$ of a vertex v in a hypergraph H is the number of edges of H that containing the vertex v. H is k-regular if every vertex has degree k. The degree [3], d(e) of a hyperedge, $e \in \mathcal{E}$ is its cardinality |e|.

A vertex of a hypergraph which is incident to no edges is called an *isolated vertex*. [9] The degree of an isolated vertex is trivially zero.

A hyperedge e of H with |e| = 1 is called a *loop*; more specifically a hyperedge $e = \{v\}$ is a loop at the vertex v. A vertex of degree 1 is called a pendant vertex.

A simple hypergraph H with |e| = 2 for each $e \in \mathcal{E}$ is a simple graph.

Let $H = (V, \mathcal{E})$ be a hypergraph. Any hypergraph $H' = (V', \mathcal{E}')$ such that $V \subseteq V'$ and $\mathcal{E} \subseteq \mathcal{E}'$ is called a *subhypergraph* [8] of H.

 $^{^{*}}Corresponding author$

Definition 1.1. [6] The cartesian product $H_1 \square H_2$ of two hypergraphs $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ is a hypergraph $H = (V, \mathcal{E})$ with vertex set $V = V_1 \times V_2$ and edge set $\mathcal{E} = \{\{u\} \times f : u \in V_1, f \in \mathcal{E}_2\} \cup \{e \times \{v\} : e \in \mathcal{E}_1, v \in V_2\}$.

Definition 1.2. A hypergraph $H = (V, \mathcal{E})$ is said to be a Hausdorff hypergraph if for any two distinct vertices u and v of V there exist hyperedges $e_1, e_2 \in \mathcal{E}$ such that $u \in e_1$ and $v \in e_2$; and $e_1 \cap e_2 = \emptyset$.

Theorem 1.3. Let H_1 and H_2 be two hypergraphs. Then the cartesian product $H_1 \Box H_2$ of H_1 and H_2 is a Hausdorff hypergraph.

Through out this paper we consider only simple hypergraph with no isolated vertices.

2 Minimal Rank Preserving Direct Product

One of the interesting product of hypergraph is minimal rank preserving direct product.

Definition 2.1. [5] The Minimal Rank Preserving Direct Product $H_1 \times H_2$ of two hypergraphs $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ is a hypergraph with vertex set $V_1 \times V_2$. A subset $e = \{(u_1, v_1), (u_2, v_2), \dots, (u_r, v_r)\}$ of $V_1 \times V_2$ is an edge of $H_1 \times H_2$ if and only if

1. $\{u_1, u_2, \ldots, u_r\}$ is an edge of H_1 and $\{v_1, v_2, \ldots, v_r\}$ is a subset of an edge of H_2 , or

2. $\{u_1, u_2, \ldots, u_r\}$ is a subset of an edge of H_1 and $\{v_1, v_2, \ldots, v_r\}$ is an edge of H_2 .

Let $e_1 = \{u_1, u_2, \dots, u_p\}$ be an edge of H_1 and $e_2 = \{v_1, v_2, \dots, v_q\}$ be an edge of H_2 . Then $e = \{(u_1, v_1), (u_2, v_2), \dots, (u_n, v_n)\}$ is an edge of $H_1 \times H_2$ with cardinality $\min\{|e_1|, |e_2|\}$.

In this paper, we discuss the Hausdorff property, that is the separation of any two distinct vertices by nonadjacent edges of different product of hypergraphs $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$. For the sake of convenience we name the distinct vertices of product hypergraphs by (u_1, v_1) and (u_2, v_2) .

Theorem 2.2. Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs. Then the minimal rank preserving direct product $H_1 \times H_2$ of H_1 and H_2 is Hausdorff, provided the degree of each edge of the hypergraph $H_1(\text{ or } H_2)$ is different from 2.

Proof. Suppose the degree of each edge of the hypergraph H_1 is different from 2. Consider any two distinct vertices of $H_1 \times H_2$. Let it be (u_1, v_1) and (u_2, v_2) .

Case 1. $u_1 = u_2, v_1 \neq v_2$

Let $e = \{u_1 = u_2, u_3, u_4, u_5, \dots, u_{n+1}\}$. Note that |e| = n and by hypothesis either n = 1 or $n \ge 3$. If n = 1, then $e_1 = \{(u_1, v_1)\}$ and $e_2 = \{(u_1, v_2)\}$ are two nonadjacent edges of $H_1 \times H_2$. If $n \ge 3$, then we have the following two subcases.

Subcase 1. There exists an edge f, with |f| = m, of H_2 which contains both v_1 and v_2 .

Let $f = \{v_1, v_2, \dots, v_m\}$. Suppose $n \ge m$. Then the edges $e_1 = \{(u_1, v_1), (u_3, v_2), (u_4, v_3), \dots, (u_{m+1}, v_m)\}$ and $e_2 = \{(u_1, v_2), (u_3, v_3), (u_4, v_4), \dots, (u_m, v_m), (u_{m+1}, v_1)\}$ of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (u_1, v_2) \in e_2$.

Subcase 2. There exist no edge of H_2 containing both v_1 and v_2 .

Let f_1 be an edge of H_2 with $|f_1| = m$ such that $v_1 \in f_1$ and f_2 be an edge of H_2 with $|f_2| = p$ such that $v_2 \in f_2$. Suppose $n \ge m \ge p$ and $|f_1 \cap f_2| = k, 0 \le k \le (p-1)$. Let $f_1 = \{v_1, v_3, \dots, v_{k+2}, \dots, v_{m+1}\}$ and $f_2 = \{w_1, w_2, \dots, w_k, w_{k+1}, \dots, w_q\}$ with $w_1 = v_2$. If $k \ge 1$, let $w_2 = v_3, w_3 = v_4 \dots, w_{k+1} = v_{k+2}$.

Then the edges

$$e_1 = \begin{cases} \{(u_1, v_1)\} & \text{if } m = 1\\ \{(u_1, v_1), (u_3, v_3), (u_4, v_4), \dots, (u_{m+1}, v_{m+1})\} & \text{otherwise} \end{cases}$$

and

$$e_{2} = \begin{cases} \{(u_{1}, w_{1})\} & \text{if } p = 1\\ \{(u_{1}, w_{1}), (u_{4}, w_{2})\} & \text{if } p = 2\\ \{(u_{1}, w_{1}), (u_{3}, w_{3}), (u_{4}, w_{4}), (u_{5}, w_{5}), \dots, (u_{p}, w_{p}), (u_{p+1}, w_{2})\} & \text{otherwise} \end{cases}$$

of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (u_1, v_2) \in e_2$.

Case 2. $u_1 \neq u_2, v_1 \neq v_2$

Subcase 1. There exists an edge $e = \{u_1, u_2, u_3, \dots, u_n\}$ of H_1 containing both u_1 and u_2 . In this case $n \ge 3$.

Suppose there exists an edge $f = \{v_1, v_2, \ldots, v_m\}$ of H_2 containing both v_1 and v_2 . Without loss of generality assume that $n \ge m$. Set

$$e_1 = \begin{cases} \{(u_1, v_1), (u_3, v_2)\} & \text{if } m = 2\\ \{(u_1, v_1), (u_2, v_3), (u_3, v_4), (u_4, v_5) \dots, (u_{m-1}, v_m)(u_m, v_2)\} & \text{otherwise} \end{cases}$$

and

$$e_{2} = \begin{cases} \{(u_{2}, v_{2}), (u_{3}, v_{1})\} & \text{if } m = 2\\ \{(u_{1}, v_{m}), (u_{2}, v_{2}), (u_{3}, v_{3}), (u_{4}, v_{4}), (u_{5}, v_{5}), \dots, (u_{m-1}, v_{m-1}), (u_{m}, v_{1})\} & \text{otherwise} \end{cases}$$

Then e_1 and e_2 are two nonadjacent edges of $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_2, v_2) \in e_2$. Suppose there exists no edge of H_2 containing both v_1 and v_2 .

Let f_1 be an edge of H_2 with $|f_1| = p$, containing v_1 and f_2 be an edge of H_2 with $|f_2| = q$, containing v_2 . Suppose $n \ge p \ge q$. Consider a subset A of e containing u_1 and u_2 with cardinality p. Let $A = \{u_1, u_2, \ldots, u_q, \ldots, u_p\}$ and let $B = \{u_1, u_2, \ldots, u_q\}$. Suppose $|f_1 \cap f_2| = k$, where $0 \le k \le (q-1)$. Let $f_1 = \{v_1, v_3, \ldots, v_{k+2}, \ldots, v_{p+1}\}$ and $f_2 = \{w_1, w_2, \ldots, w_k, w_{k+1}, \ldots, w_q\}$ with $w_1 = v_2$. If $k \ge 1$, let $w_2 = v_3, w_3 = v_4 \ldots, w_{k+1} = v_{k+2}$.

 Set

$$e_1 = \begin{cases} \{(u_1, v_1)\} & \text{if } p = 1\\ \{(u_1, v_1), (u_2, v_3), (u_3, v_4) \dots, (u_p, v_{p+1})\} & \text{otherwise} \end{cases}$$

and

$$e_{2} = \begin{cases} \{(u_{2}, w_{1})\} & \text{if } q = 1\\ \{(u_{2}, w_{1}), (u_{3}, w_{2})\} & \text{if } q = 2\\ \{(u_{1}, w_{q}), (u_{2}, w_{1}), (u_{3}, w_{2}), (u_{4}, w_{3}), \dots, (u_{q}, w_{q-1})\} & \text{otherwise} \end{cases}$$

Then e_1 and e_2 are two nonadjacent edges of $H_1 \times H_2$ such that $(u_1, v_1) \in e_1, (u_2, v_2) \in e_2$.

Subcase 2. There exists no edge of H_1 containing both u_1 and u_2 .

Let g_1 be an edge of H_1 with $|g_1| = n$, containing u_1 and g_2 be an edge of H_1 with $|g_2| = m$ containing u_2 . Let $n \ge m$ and $|g_1 \cap g_2| = k$, $0 \le k \le (m-1)$. Let $g_1 = \{u_1, u_3, \ldots, u_{k+2}, \ldots, u_{n+1}\}$ and $g_2 = \{x_1, x_2, \ldots, x_k, x_{k+1}, \ldots, x_m\}$ with $x_1 = u_2$. If $k \ge 1$, let $x_2 = u_3, x_3 = u_4 \ldots, x_{k+1} = u_{k+2}$. Suppose there exists an edge f of H_2 with |f| = p, containing both v_1 and v_2 .

Then as in the proof of Subcase 1 of Case 2, we can prove that there exist two nonadjacent edges e_1 and e_2 in $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_2, v_2) \in e_2$.

Suppose there exists no edge of H_2 containing both v_1 and v_2 .

Let f_1 be an edge of H_2 with $|f_1| = p$, containing v_1 and f_2 an edge of H_2 with $|f_2| = q$, containing v_2 . Assume $n \ge p \ge q$ and $m \ge q$. Let $|f_1 \cap f_2| = l, 0 \le l \le (q-1)$. Let $f_1 = \{v_1, v_3, \dots, v_{l+2}, \dots, v_{p+1}\}$ and $f_2 = \{y_1, y_2, \dots, y_l, y_{l+1}, \dots, y_q\}$ with $y_1 = v_2$. If $l \ge 1$, let $y_2 = v_3, y_3 = v_4 \dots, y_{l+1} = v_{l+2}$. Set an edge e_1 of $H_1 \times H_2$ with cardinality p as,

$$e_1 = \begin{cases} \{(u_1, v_1)\} & \text{if } p = 1\\ \{(u_1, v_1), (u_3, v_3), (u_4, v_4), \dots, (u_p, v_p), (u_{p+1}, v_{p+1})\} & \text{otherwise} \end{cases}$$

and an edge e_2 with cardinality q as,

$$e_{2} = \begin{cases} \{(x_{1}, y_{1})\} & \text{if } q = 1\\ \{(x_{1}, y_{1}), (x_{3}, y_{2})\} & \text{if } q = 2\\ \{(x_{1}, y_{1}), (x_{2}, y_{3}), (x_{3}, y_{4}) \dots, (x_{q-1}, y_{q}), (x_{q}, y_{2})\} & \text{otherwise} \end{cases}$$

Then e_1 and e_2 are two nonadjacent edges of $H_1 \times H_2$ such that $(u_1, v_1) \in e_1, (u_2, v_2) \in e_2$.

The other inequalities between n, m, p and q in cases 1 and 2 can be dealt in a similar way.

Remark 2.3. From the proof of Theorem 2.2 we can conclude the following

For any two hypergraphs $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ and for any two distinct vertices (u_1, v_1) and (u_2, v_2) of $H_1 \times H_2$, if there exists an edge e of H_1 containing u_1 or u_2 or both and an edge f of H_2 containing v_1 or v_2 or both, then there exists two nonadjacent edges e_1 and e_2 in $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_2, v_2) \in e_2$, provided $|e| \neq 2$ or $|f| \neq 2$.

Remark 2.4. Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs. If both H_1 and H_2 contain edges of degree 2, then the minimal rank preserving direct product $H_1 \times H_2$ of H_1 and H_2 need not be Hausdorff. (See Figure 1.)

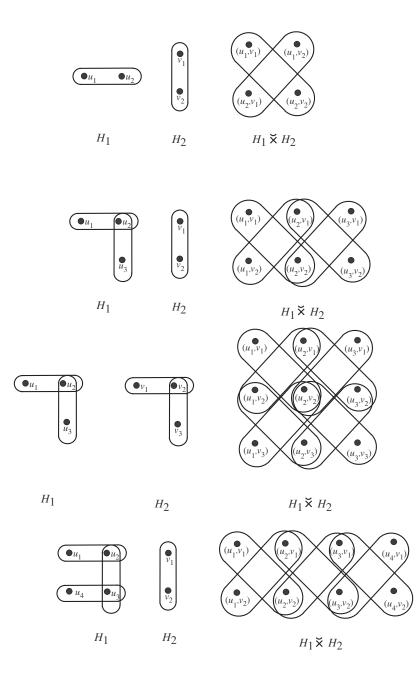


Figure 1: The minimal rank preserving direct product of H_1 and H_2 .

Remark 2.5. Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs. If the degree of each vertex in any edge of degree 2 of the hypergraph H_1 (or H_2) is different from 1, then the minimal rank preserving direct product $H_1 \times H_2$ of H_1 and H_2 is Hausdorff. (See Figure 2).

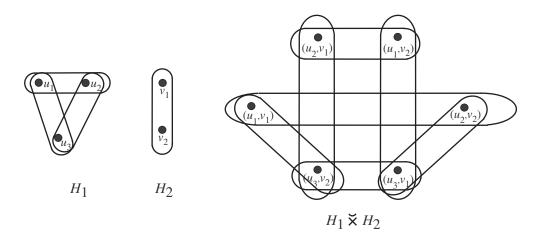


Figure 2: The minimal rank preserving direct product of H_1 and H_2 .

Theorem 2.6. Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs. Then the minimal rank preserving direct product $H_1 \times H_2$ of H_1 and H_2 is Hausdorff provided degree of each vertex in any edge of degree 2 of the hypergraph $H_1(\text{ or } H_2)$ is different from 1.

Proof. Suppose the degree of each vertex of degree 2 of the hypergraph H_1 is different from 1. Let (u_1, v_1) and (u_2, v_2) , be two distinct vertices of $H_1 \times H_2$.

By remark 2.3 we need only to consider the cases where the edges considered are of degree 2.

Case 1. $u_1 = u_2, v_1 \neq v_2$

Let $e = \{u_1 = u_2, u_3\}$ be an edge of H_1 and f be an edge of H_2 containing v_1 . By hypothesis of the theorem there exists another edge h containing u_1 and a vertex x different from u_3 .

If $v_2 \in f$, then $f = \{v_1, v_2\}$. In this case the edges $e_1 = \{(u_1, v_1), (u_3, v_2)\}$ and $e_2 = \{(u_1, v_2), (x, v_1)\}$ of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1$ and $(u_1, v_2) \in e_2$.

If $v_2 \notin f$, then let $f = \{v_1, v_3\}$, where $v_3 \neq v_2$ and let $g = \{w_1 = v_2, w_2\}$ be an edge of H_2 containing v_2 . Then the edges $e_1 = \{(u_1, v_1), (u_3, v_3)\}$ and $e_2 = \{(u_1, w_1), (x, w_2)\}$ of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1$ and $(u_1, v_2) \in e_2$.

Case 2. $u_1 \neq u_2, v_1 \neq v_2$

Subcase 1. There exists an edge $e = \{u_1, u_2\}$ of H_1 containing both u_1 and u_2 .

Suppose there exists an edge $f = \{v_1, v_2\}$ of H_2 containing both v_1 and v_2 .

By hypothesis of the theorem there exists an edge h_1 containing u_1 and a vertex x different from u_2 and another edge h_2 containing u_2 and a vertex y different from u_1 . Then $e_1 = \{(u_1, v_1), (x, v_2)\}$ and $e_2 = \{(y, v_1), (u_2, v_2)\}$ are two nonadjacent edges of $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_2, v_2) \in e_2$.

Suppose there exist no edge of H_2 containing both v_1 and v_2 .

Let $f = \{v_1, v_3\}$ and $g = \{w_1 = v_2, w_2\}$ be two edges of H_2 . Set $e_1 = \{(u_1, v_1), (u_2, v_3)\}$ and $e_2 = \{(u_1, w_2), (u_2, w_1)\}$. Then e_1 and e_2 are two nonadjacent edges of $H_1 \times H_2$ and $(u_1, v_1) \in e_1$, $(u_2, v_2) \in e_2$.

Subcase 2. There exists no edge of H_1 containing both u_1 and u_2 .

Let $e = \{u_1, u_3\}$ and $g = \{x_1 = u_2, x_2\}$ be two edges of H_1

Suppose there exists an edge of H_2 containing both v_1 and v_2 .

Then as in the proof of Subcase 1 of Case 2, we can prove that there exist two nonadjacent edges e_1 and e_2 in $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_2, v_2) \in e_2$.

Suppose there exist no edge of H_2 containing both v_1 and v_2 .

Let $f = \{v_1, v_3\}$ and $h = \{y_1 = v_2, y_2\}$ be two edges of H_2 .

Suppose $e \cap g \neq \emptyset$, then $u_3 = x_2$. By hypothesis of the theorem there exists an edge g_1 containing u_1 and a vertex x different from u_3 . Then $e_1 = \{(u_1, v_1), (x, v_3)\}$ and $e_2 = \{(x_1, y_1), (x_2, y_2)\}$ are two nonadjacent edges of $H_1 \times H_2$ and $(u_1, v_1) \in e_1, (u_2, v_2) \in e_2$. Suppose $e \cap g = \emptyset$, then

 $e_1 = \{(u_1, v_1), (u_3, v_3)\}$ and $e_2 = \{(x_1, y_1), (x_2, y_2)\}$ are two nonadjacent edges of $H_1 \times H_2$ and $(u_1, v_1) \in e_1, (u_2, v_2) \in e_2$.

Hence the theorem.

Let H_1 and H_2 be two hypergraphs, if all the edges of H_1 or H_2 are loops, then all the edges of $H_1 \times H_2$ are loops. As a consequence we have the following proposition.

Proposition 2.7. Let H_1 and H_2 be two hypergraphs. If all the edges of one of them are loops, then the minimal rank preserving direct product $H_1 \times H_2$ of H_1 and H_2 is Hausdorff.

Definition 2.8. The Normal product [5] $H_1 \boxtimes H_2$ of two hypergraphs $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ is a hypergraph with vertex set $V_1 \times V_2$ and a subset $e = \{(u_1, v_1), (u_2, v_2), (u_3, v_3), \dots, (u_n, v_n)\}$ of $V_1 \times V_2$ is an edge of $H_1 \boxtimes H_2$ if,

- 1. $\{u_1, u_2, \dots, u_n\}$ is an edge of H_1 and $v_1 = v_2 = \dots = v_n \in V_2$, or
- 2. $\{v_1, v_2, ..., v_n\}$ is a subset of an edge of H_2 and $u_1 = u_2 = ... = u_n \in V_1$, or
- 3. $\{u_1, u_2, \ldots, u_n\}$ is an edge of H_1 and $\{v_1, v_2, \ldots, v_n\}$ is a subset of an edge of H_2 , or
- 4. $\{v_1, v_2, \ldots, v_n\}$ is an edge of H_2 and $\{u_1, u_2, \ldots, u_n\}$ is a subset of an edge of H_1 .

Remark 2.9. Cartesian product $H_1 \Box H_2$ of two hypergraphs H_1 and H_2 is a subhypergraph of their normal product $H_1 \boxtimes H_2$ with $V(H_1 \Box H_2) = V(H_1 \boxtimes H_2)$.

Theorem 2.10. Let H_1 and H_2 be two hypergraphs. Then the normal product $H_1 \boxtimes H_2$ of H_1 and H_2 is Hausdorff.

3 Maximal Rank Preserving Direct Product

Definition 3.1. [5] The Maximal Rank Preserving Direct Product $H_1 \otimes H_2$ of two hypergraphs $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ is a hypergraph with vertex set $V_1 \times V_2$. A subset $e = \{(u_1, v_1), (u_2, v_2), \dots, (u_r, v_r)\}$ of $V_1 \times V_2$ is an edge of $H_1 \otimes H_2$ if,

- 1. $\{u_1, u_2, \ldots, u_r\}$ is an edge of H_1 and there is an edge $f \in \mathcal{E}_2$ of H_2 such that $\{v_1, v_2, \ldots, v_r\}$ is a multiset² of elements of f, and $f \subseteq \{v_1, v_2, \ldots, v_r\}$, or
- 2. $\{v_1, v_2, \ldots, v_r\}$ is an edge of H_2 and there is an edge $e \in \mathcal{E}_1$ of H_1 such that $\{u_1, u_2, \ldots, u_r\}$ is a multiset of elements of e, and $e \subseteq \{u_1, u_2, \ldots, u_r\}$.

Let $e_1 = \{u_1, u_2, \dots, u_p\}$ be an edge of H_1 and $e_2 = \{v_1, v_2, \dots, v_q\}$ be an edge of H_2 . Then $e = \{(u_1, v_1), (u_2, v_2), \dots, (u_n, v_n)\}$ is an edge of $H_1 \times H_2$ with cardinality $\max |e_1|, |e_2|$.

Remark 3.2. Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs. Then the maximal rank preserving direct product $H_1 \times H_2$ of H_1 and H_2 is need not be Hausdorff if one of the hypergraph contains a loop. (See Figure 3.)

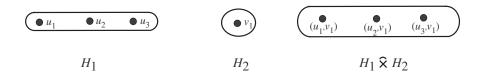


Figure 3: The maximal rank preserving direct product of H_1 and H_2 .

²A multiset is an unordered collection of objects (called the elements) in which, unlike a standard (Cantorian) set, elements are allowed to repeat. In other words a multiset is a set in which elements may belong more than once. $\{1, 1, 1, 2, 3, 3\}$ is a multiset.

Theorem 3.3. Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs with no loops. Then the maximal rank preserving direct product $H_1 \otimes H_2$ of H_1 and H_2 is Hausdorff provided degree of each edge of the hypergraph $H_1(\text{ or } H_2)$ is different from 2.

Proof. Suppose the degree of each edge of the hypergraph H_1 is different from 2.

Consider two distinct vertices (u_1, v_1) and (u_2, v_2) of $H_1 \times H_2$.

Case 1. $u_1 = u_2, v_1 \neq v_2$ Let $e = \{u_1, u_3, u_4 \dots u_{n+1}\}$ be an edge of H_1 containing u_1 with |e| = n.

Subcase 1. There exists an edge f, with |f| = m, of H_2 which contains both v_1 and v_2 . Let $f = \{v_1, v_2, \dots, v_m\}$. Without loss of generality assume that $n \ge m$.

If n = m, then $e_1 = \{(u_1, v_1), (u_3, v_2), (u_4, v_3) \dots, (u_{n+1}, v_m)\}$ and $e_2 = \{(u_1, v_2), (u_3, v_3), (u_4, v_4) \dots, (u_n, v_m), (u_{n+1}, v_1)\}$ are nonadjacent edges of $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_1, v_2) \in e_2$.

If n > m, then the edges $e_1 = \{(u_1, v_1), (u_3, v_2), (u_4, v_3) \dots, (u_{m+1}, v_m), (u_{m+2}, v_m), \dots, (u_{n+1}, v_m)\}$ and $e_2 = \{(u_1, v_2), (u_3, v_3), (u_4, v_4), \dots, (u_m, v_m), (u_{m+1}, v_1), (u_{m+2}, v_1) \dots, (u_{n+1}, v_1)\}$ of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (u_1, v_2) \in e_2$.

Subcase 2. There exist no edge of H_2 containing both v_1 and v_2 .

Let f_1 be an edge of H_2 with $|f_1| = p$, containing v_1 and f_2 be an edge of H_2 with $|f_2| = q$, containing v_2 .

Assume $p \ge q$ and $|f_1 \cap f_2| = k$, $0 \le k \le (q-1)$. Let $f_1 = \{v_1, v_3, \dots, v_{k+2}, \dots, v_{p+1}\}$ and $f_2 = \{w_1, w_2, \dots, w_{k+1}, \dots, w_q\}$ with $w_1 = v_2$. If $k \ge 1$, let $w_2 = v_3, w_3 = v_4, \dots, w_{k+1} = v_{k+2}$.

If n = p = q, then $e_1 = \{(u_1, v_1), (u_3, v_3), (u_4, v_4) \dots, (u_{n+1}, v_{n+1})\}$ and $e_2 = \{(u_1, w_1), (u_3, w_3), (u_4, w_4), (u_4, w_4), \dots, (u_n, w_n), (u_{n+1}, w_2)\}$ are nonadjacent edges of $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_1, v_2) \in e_2$.

If n = p > q, then the edges $e_1 = \{(u_1, v_1), (u_3, v_3), (u_4, v_4) \dots, (u_{n+1}, v_{n+1})\}$ and

$$e_{2} = \begin{cases} \{(u_{1}, w_{1}), (u_{3}, w_{1}), (u_{4}, w_{2}), (u_{5}, w_{1}), (u_{6}, w_{1}), \dots, (u_{n+1}, w_{1})\} & \text{if } q = 2 \\ \{(u_{1}, w_{1}), (u_{3}, w_{3}), (u_{4}, w_{4}), (u_{5}, w_{5}), \dots, (u_{q}, w_{q}), (u_{q+1}, w_{2}), (u_{q+2}, w_{1}), \\ (u_{q+3}, w_{1}), \dots, (u_{n+1}, w_{1})\} & \text{if } q \neq 2 \end{cases}$$

of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (u_1, v_2) \in e_2$.

If n > p, then the edges $e_1 = \{(u_1, v_1), (u_3, v_3), (u_4, v_4), \dots, (u_{p+1}, v_{p+1}), (u_{p+2}, v_1), \dots, (u_{n+1}, v_1)\}$ and

$$e_{2} = \begin{cases} \{(u_{1}, w_{1}), (u_{3}, w_{1}), (u_{4}, w_{2}), (u_{5}, w_{1}), (u_{6}, w_{1}), \dots, (u_{n+1}, w_{1})\} & \text{if } q = 2\\ \{(u_{1}, w_{1}), (u_{3}, w_{3}), (u_{4}, w_{4}), (u_{5}, w_{5}), \dots, (u_{q}, w_{q}), (u_{q+1}, w_{2}), (u_{q+2}, w_{1}), \\ (u_{q+3}, w_{1}), \dots, (u_{n+1}, w_{1})\} & \text{if } q \neq 2 \end{cases}$$

are nonadjacent edges of $H_1 \times H_2$ and $(u_1, v_1) \in e_1, (u_1, v_2) \in e_2$.

Case 2. $u_1 \neq u_2 , v_1 \neq v_2$

Subcase 1. There exists an edge e of H_1 with |e| = n, containing both u_1 and u_2 .

Let $e = \{u_1, u_2, \dots, u_n\}$

Suppose there exists an edge f of H_2 with |f| = m, containing both v_1 and v_2 . Let $f = \{v_1, v_2, \ldots, v_m\}$.

If n = m, then the edges $e_1 = \{(u_1, v_1), (u_2, v_3), (u_3, v_4), (u_4, v_5), \dots, (u_{n-1}, v_n), (u_n, v_2)\}$ and

$$e_{2} = \begin{cases} \{(u_{1}, v_{3}), (u_{2}, v_{2}), (u_{3}, v_{1})\} & \text{if } m = 3\\ \{(u_{2}, v_{2}), (u_{3}, v_{1}), (u_{4}, v_{3}), (u_{5}, v_{4}), (u_{6}, v_{5}), \dots, (u_{n}, v_{m-1}), (u_{1}, v_{m})\} & \text{if } m \neq 3 \end{cases}$$

of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (u_2, v_2) \in e_2$.

If n > m, then the edges

$$e_1 = \begin{cases} \{(u_1, v_1), (u_2, v_1), (u_3, v_2), (u_4, v_2), \dots, (u_n, v_2)\} & \text{if } m = 2\\ \{(u_1, v_1), (u_2, v_3), (u_3, v_4), (u_4, v_5), \dots, (u_{m-1}, v_m), \\ (u_m, v_2), (u_{m+1}, v_2), (u_{m+2}, v_2), \dots, (u_n, v_2)\} & \text{if } m \neq 2 \end{cases}$$

and

$$e_{2} = \begin{cases} \{(u_{1}, v_{2}), (u_{2}, v_{2}), (u_{3}, v_{1}), (u_{4}, v_{1}), (u_{5}, v_{1}) \dots, (u_{n}, v_{1})\} & \text{if } m = 2\\ \{(u_{1}, v_{3}), (u_{2}, v_{2}), (u_{3}, v_{1}), (u_{4}, v_{1}), (u_{5}, v_{1}) \dots, (u_{n}, v_{1})\} & \text{if } m = 3\\ \{(u_{2}, v_{2}), (u_{3}, v_{1}), (u_{4}, v_{3}), (u_{5}, v_{4}), (u_{6}, v_{5}), \dots, (u_{m}, v_{m-1}), \\ (u_{1}, v_{m}), (u_{m+1}, v_{1}), (u_{m+2}, v_{1}) \dots, (u_{n}, v_{1})\} & \text{otherwise} \end{cases}$$

of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1$; and $(u_2, v_2) \in e_2$.

Suppose there exists no edge of H_2 containing both v_1 and v_2 .

Let f_1 be an edge of H_2 with $|f_1| = p$ such that $v_1 \in f_1$ and f_2 be an edge of H_2 with $|f_2| = q$ such that $v_2 \in f_2$.

Assume $p \ge q$ and $|f_1 \cap f_2| = k, 0 \le k \le (q-1)$. Let $f_1 = \{v_1, v_3, v_4, \dots, v_{k+2}, \dots, v_{p+1}\}$ and $f_2 = \{w_1, w_2, \dots, w_{k+1}, \dots, w_q\}$ with $w_1 = v_2$. If $k \ge 1$, let $w_2 = v_3, w_3 = v_4, \dots, w_{k+1} = v_{k+2}$.

If n = p = q, then the edges $e_1 = \{(u_1, v_1), (u_2, v_3), (u_3, v_4) \dots, (u_n, v_{n+1})\}$ and $e_2 = \{(u_2, w_1), (u_3, w_2), (u_4, w_3), \dots, (u_n, w_{n-1}), (u_1, w_n)\}$ of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1$ and $(u_2, v_2) \in e_2$.

If n = p > q, then $e_1 = \{(u_1, v_1), (u_2, v_3), (u_3, v_4), \dots, (u_n, v_{n+1})\}$ and $e_2 = \{(u_2, w_1), (u_3, w_2), \dots, (u_n, v_{n+1})\}$

 $(u_4, w_3), \ldots, (u_q, w_{q-1})(u_1, w_q), (u_{q+1}, w_1), (u_{q+2}, w_1), \ldots, (u_n, w_1)\}$ are nonadjacent edges of $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_2, v_2) \in e_2$.

If n > p, then the edges $e_1 = \{(u_1, v_1), (u_2, v_3), (u_3, v_4) \dots, (u_p, v_{p+1}), (u_{p+1}, v_1), (u_{p+2}, v_1), \dots, (u_n, v_1)\}$ and $e_2 = \{(u_2, w_1), (u_3, w_2), (u_4, w_3), \dots, (u_q, w_{q-1}), (u_1, w_q), (u_{q+1}, w_1), (u_{q+2}, w_1), \dots, (u_n, w_1)\}$ of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1$; and $(u_2, v_2) \in e_2$.

Subcase 2. There exists no edge of H_1 containing both u_1 and u_2 .

Let g_1 be an edge of H_1 with $|g_1| = n$, containing u_1 and g_2 be an edge of H_1 with $|g_2| = m$ containing u_2 . Without loss of generality assume that $n \ge m$. Let $|g_1 \cap g_2| = k, 0 \le k \le (m-1)$. Let $g_1 = \{u_1, u_3, u_4, \ldots, u_{k+2}, \ldots, u_{n+1}\}$ and $g_2 = \{x_1, x_2, x_3, \ldots, x_{k+1}, \ldots, x_m\}$ with $x_1 = u_2$. If $k \ge 1$, let $x_2 = u_3, x_3 = u_4, \ldots, x_{k+1} = u_{k+2}$.

Suppose there exists an edge f of H_2 with |f| = p, containing both v_1 and v_2 .

Then as in the proof of Subcase 1 of Case 2, we can prove that there exist two nonadjacent edges e_1 and e_2 of $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_2, v_2) \in e_2$.

Suppose there exists no edge of H_2 containing both v_1 and v_2 .

Let f_1 be an edge of H_2 with $|f_1| = p$ such that $v_1 \in f_1$ and f_2 be an edge of H_2 with $|f_2| = q$ such that $v_2 \in f_2$.

Assume $p \ge q$ and $|f_1 \cap f_2| = t, 0 \le t \le (q-1)$. Let $f_1 = \{v_1, v_3, v_4, \dots, v_{t+2}, \dots, v_{p+1}\}$ and $f_2 = \{y_1, y_2, \dots, y_{t+1}, \dots, y_q\}$ with $y_1 = v_2$. If $t \ge 1$, let $y_2 = v_3, y_3 = v_4, \dots, y_{t+1} = v_{t+2}$. Then $(u_2, v_2) = (x_1, y_1)$.

If n = m, then we have to consider four cases n = p, m = q; n > p, m = q; n = p, m > q and n > p, m > q.

Suppose n = p, m = q. Then the edges $e_1 = \{(u_1, v_1), (u_3, v_3), (u_4, v_4), \dots, (u_{n+1}, v_{n+1})\}$ and $e_2 = \{(x_1, y_1), (x_2, y_3), (x_3, y_4), (x_4, y_5), \dots, (x_{m-1}, y_m), (x_m, y_2)\}$ of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (x_1, y_1) \in e_2$.

Suppose n = p, m > q. Then $e_1 = \{(u_1, v_1), (u_3, v_3), (u_4, v_4), \dots, (u_{n+1}, v_{n+1})\}$ and

$$e_{2} = \begin{cases} \{(x_{1}, y_{1}), (x_{2}, y_{1}), (x_{3}, y_{2}), (x_{4}, y_{2}), \dots, (x_{m-1}, y_{2}), (x_{m}, y_{2})\} & \text{if } q = 2\\ \{(x_{1}, y_{1}), (x_{2}, y_{3}), (x_{3}, y_{4}), (x_{4}, y_{5}), \dots, (x_{q-1}, y_{q}), (x_{q}, y_{2}), \\ (x_{q+1}, y_{2}), (x_{q+2}, y_{2}), \dots, (x_{m}, y_{2})\} & \text{if } q \neq 2 \end{cases}$$

Suppose n > p, m = q. Then the edges $e_1 = \{(u_1, v_1), (u_3, v_3), \dots, (u_p, v_p), (u_{p+1}, v_{p+1}), (u_{p+2}, v_1), (u_{p+3}, v_1) \dots, (u_{n+1}, v_1)\}$ and $e_2 = \{(x_1, y_1), (x_2, y_3), (x_3, y_4), (x_4, y_5), \dots, (x_{m-1}, y_m), (x_m, y_2)\}$ of $H_1 \hat{\times} H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (x_1, y_1) \in e_2$.

Suppose n > p, m > q. Then the edges

$$e_{1} = \begin{cases} \{(u_{1}, v_{1}), (u_{3}, v_{3}), (u_{4}, v_{1}), (u_{5}, v_{1}), \dots, (u_{n+1}, v_{1})\} & \text{if } p = 2\\ \{(u_{1}, v_{1}), (u_{3}, v_{3}), \dots, (u_{p}, v_{p}), (u_{p+1}, v_{p+1}), (u_{p+2}, v_{1}), \\ (u_{p+3}, v_{1}) \dots, (u_{n+1}, v_{1})\} & \text{if } p \neq 2 \end{cases}$$

$$e_{2} = \begin{cases} \{(x_{1}, y_{1}), (x_{2}, y_{1}), (x_{3}, y_{2}), (x_{4}, y_{2}), \dots, (x_{m}, y_{2})\} & \text{if } q = 2\\ \{(x_{1}, y_{1}), (x_{2}, y_{3}), (x_{3}, y_{4}), (x_{4}, y_{5}), \dots, (x_{q-1}, y_{q}), \\ (x_{q}, y_{2}), (x_{q+1}, y_{2}), (x_{q+2}, y_{2}), \dots, (x_{m}, y_{2})\} & \text{if } q \neq 2 \end{cases}$$

of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (x_1, y_1) \in e_2$.

Similarly, if n > m, we can show that there exists two nonadjacent edges e_1 and e_2 in $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$, $(x_1, y_1) \in e_2$.

The other inequalities between n, m, p and q in cases 1 and 2 can be dealt in a similar way.

Remark 3.4. As in the minimal rank preserving direct product here also we have, for any two hypergraphs $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ with no loops and for any two distinct vertices (u_1, v_1) and (u_2, v_2) of $H_1 \times H_2$, if there exists an edge e of H_1 containing u_1 or u_2 or both and an edge f of H_2 containing v_1 or v_2 or both, then there exists two nonadjacent edges e_1 and e_2 in $H_1 \times H_2$ such that $(u_1, v_1) \in e_1$ and $(u_2, v_2) \in e_2$, provided $|e| \neq 2$ or $|f| \neq 2$.

Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs with no loops. The edges of $H_1 \times H_2$ and $H_1 \times H_2$ corresponding to the edges of degree 2 in H_1 and H_2 are same. Hence as in the case of minimal rank preserving direct product, $H_1 \times H_2$ need not be Hausdorff if both the graphs contains edges of degree 2 (See Figure 1) and a similar result of Theorem 2.6 also holds in the case of maximal rank preserving direct product.

Theorem 3.5. Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs with no loops. Then the maximal rank preserving direct product $H_1 \times H_2$ of H_1 and H_2 is Hausdorff provided degree of each vertex in any edge of degree 2 of the hypergraph H_1 (or H_2) is different from 1.

Let H_1 and H_2 be two hypergraphs, if all the edges of both H_1 and H_2 are loops, then all the edges of $H_1 \times H_2$ are loops. As a consequence we have the following proposition.

Proposition 3.6. Let H_1 and H_2 be two hypergraphs. If all the edges of both of them are loops, then the maximal rank preserving direct product $H_1 \stackrel{\sim}{\times} H_2$ of H_1 and H_2 is Hausdorff.

Definition 3.7. The Strong product [5] $H_1 \boxtimes H_2$ of two hypergraphs $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ is a hypergraph with vertex set $V_1 \times V_2$ and a subset $e = \{(u_1, v_1), (u_2, v_2), (u_3, v_3), \dots, (u_n, v_n)\}$ of $V_1 \times V_2$ is an edge of $H_1 \boxtimes H_2$ if,

- 1. $\{u_1, u_2, \ldots, u_n\}$ is an edge of H_1 and $v_1 = v_2 = \ldots = v_r \in V_2$, or
- 2. $\{v_1, v_2, \ldots, v_n\}$ is a subset of an edge of H_2 and $u_1 = u_2 = \ldots = u_n \in V_1$, or
- 3. $\{u_1, u_2, \ldots, u_r\}$ is an edge of H_1 and there is an edge $f \in \mathcal{E}_2$ of H_2 such that $\{v_1, v_2, \ldots, v_r\}$ is a multiset of elements of f, and $f \subseteq \{v_1, v_2, \ldots, v_r\}$, or
- 4. $\{v_1, v_2, \ldots, v_r\}$ is an edge of H_2 and there is an edge $f \in \mathcal{E}_1$ of H_1 such that $\{u_1, u_2, \ldots, u_r\}$ is a multiset of elements of f, and $f \subseteq \{u_1, u_2, \ldots, u_r\}$.

Remark 3.8. $E(H_1 \boxtimes H_2) = E(H_1 \square H_1) \cup E(H_1 \widehat{\times} H_2)$. Thus it is immediate that if H_1 and H_2 are two Hausdorff hypergraphs then their strong product is Hausdorff.

4 Non-rank Preserving Direct Product

Definition 4.1. [5] The Non-rank preserving direct product $H_1 \cong H_2$ of two hypergraphs $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ is a hypergraph with vertex set $V_1 \times V_2$ and edge set $\{\{(u, v)\} \cup ((e - \{u\}) \times (f - \{v\})) | u \in e \in \mathcal{E}_1, v \in f \in \mathcal{E}_2\}$.

Remark 4.2. If H_1 is a hypergraph with all of its edges are loops then for any hypergraph H_2 , the edges of $H_1 \times H_2$ are loops. Hence it is Haudorff.

Theorem 4.3. Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs. Suppose $|e| \neq 2$ for any $e \in \mathcal{E}_1$ and H_2 is 2-uniform, then $H_1 \times H_2$ is Hausdorff.

Proof. Consider two distinct vertices (u_1, v_1) and (u_2, v_2) of $H_1 \times H_2$

Case 1. $u_1 = u_2, v_1 \neq v_2$

Let e be an edge of H_1 with |e| = n, such that $u_1 \in e$. If e is the loop $\{u_1\}$, then $\{(u_1, v_1)\}$ and $\{(u_2, v_2)\}$ are nonadjacent edges of $H_1 \cong H_2$. Otherwise let $e = \{u_1, u_3, u_4, \dots, u_{n+1}\}$.

Subcase 1. $f = \{v_1, v_2\}$ is an edge of H_2 .

Now, the edges $e_1 = \{(u_1, v_1)\} \cup (\{u_3, u_4, \dots, u_{n+1}\} \times \{v_2\})$ and $e_2 = \{(u_1, v_2)\} \cup (\{u_3, u_4, \dots, u_{n+1}\} \times \{v_1\})$ of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (u_1, v_2) \in e_2$.

Subcase 2. There exists no edge of H_2 containing both v_1 and v_2 .

Let f_1 be an edge of H_2 such that $v_1 \in f_1$ and f_2 be an edge of H_2 such that $v_2 \in f_2$. Let $f_1 = \{v_1, v\}$ and $f_2 = \{v_2, w\}$. Then the edges $e_1 = \{(u_4, v)\} \cup (\{u_1, u_3, u_5, u_6 \dots, u_{n+1}\} \times \{v_1\})$ and $e_2 = \{(u_3, w)\} \cup (\{u_1, u_4, u_5 \dots, u_{n+1}\} \times \{v_2\})$ of $H_1 \cong H_2$ are nonadjacent and $(u_1, v_1) \in e_1$, $(u_1, v_2) \in e_2$.

Case 2. $u_1 \neq u_2, v_1 \neq v_2$

Subcase 1. There exists an edge e of H_1 with |e| = n, containing both u_1 and u_2 , where $n \ge 3$. Let $e = \{u_1, u_2, u_3, \ldots, u_n\}$

Assume that $f = \{v_1, v_2\}$ is an edge of H_2 . Then the edges $e_1 = \{(u_n, v_2)\} \cup (\{u_1, u_2, \dots, u_{n-1}\} \times \{v_1\})$ and $e_2 = \{(u_n, v_1)\} \cup (\{u_1, u_2, \dots, u_{n-1}\} \times \{v_2\})$ of $H_1 \cong H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (u_2, v_2) \in e_2$.

Suppose there exists no edge of H_2 containing both v_1 and v_2 . Let f_1 be an edge of H_2 such that $v_1 \in f_1$ and f_2 be an edge of H_2 such that $v_2 \in f_2$. Suppose $f_1 = \{v_1, v\}$ and $f_2 = \{v_2, w\}$. Then the edges $e_1 = \{(u_1, v_1)\} \cup (\{u_2, u_3, \ldots, u_n\} \times \{v\})$ and $e_2 = \{(u_1, w)\} \cup (\{u_2, u_3, \ldots, u_n\} \times \{v_2\})$ of $H_1 \approx H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (u_2, v_2) \in e_2$.

Subcase 2. There exists no edge of H_1 containing both u_1 and u_2 .

Let g_1 be an edge of H_1 with $|g_1| = n$, containing u_1 and g_2 be an edge of H_1 with $|g_2| = m$, containing u_2 . Let us suppose that $n \ge m$. If n = 1, then there is nothing to prove. So assume n > 1. Suppose $|g_1 \cap g_2| = k$, $0 \le k \le (m-1)$. Let $g_1 = \{u_1, u_3, u_4, \ldots, u_{n+1}\}$ and $g_2 = \{w_1, w_2, \ldots, w_k, \ldots, w_m\}$ with $w_1 = u_2$. If $k \ge 1$, let $w_2 = u_3, w_3 = u_4, \ldots, w_{k+1} = u_{k+2}$.

Assume that $f = \{v_1, v_2\}$ is an edge of H_2 . Note that, the edges $e_1 = \{(u_1, v_1)\} \cup (\{u_3, u_4, \dots, u_{n+1}\} \times \{v_2\})$ and $e_2 = \{(w_1, v_2)\} \cup (\{w_2, w_3, \dots, w_m\} \times \{v_1\})$ of $H_1 \cong H_2$ are nonadjacent and $(u_1, v_1) \in e_1$, $(u_2, v_2) \in e_2$.

Suppose there exists no edge of H_2 containing both v_1 and v_2 .

Suppose $f_1 = \{v_1, v\}$ and $f_2 = \{v_2, w\}$ are two edges of H_2 . Then the edges $e_1 = \{(u_4, v)\} \cup (\{u_1, u_3, u_4, \dots, u_{n+1}\} \times \{v_1\})$ and $e_2 = \{(w_2, w)\} \cup (\{w_1, w_3, w_4, \dots, w_m\} \times \{v_2\})$ of $H_1 \cong H_2$ are nonadjacent and $(u_1, v_1) \in e_1, (u_2, v_2) \in e_2$.

Hence the theorem.

Theorem 4.4. Let $H_1 = (V_1, \mathcal{E}_1)$ and $H_2 = (V_2, \mathcal{E}_2)$ be two hypergraphs. If H_1 is Hausdorff and for any vertex $v \in V_1$, if there exists distinct edges e and f containing v such that $e \cap f = \{v\}$, then $H_1 \approx H_2$ is Hausdorff.

Proof. Consider two distinct vertices (u_1, v_1) and (u_2, v_2) of $H_1 \times H_2$.

Case 1. $v_1 = v_2$

In this case $u_1 \neq u_2$. As H_1 is Hausdorff, there exist nonadjacent edges e_1 and e_2 in H such that $u_1 \in e_1$ and $u_2 \in e_2$. Let $|e_1| = n$ and $|e_2| = m$. If n = 1 or m = 1, then there is nothing to prove. So assume that $n, m \geq 2$. Let $e_1 = \{u_1, u_3, \ldots, u_{n+1}\}$ and $e_2 = \{w_1, w_2, \ldots, w_m\}$ with $w_1 = u_2$. Let g be an edge of H_2 with |g| = p, containing v_1 . Suppose $g = \{v_1, v_3, v_4, \ldots, v_{p+1}\}$. Such an edge exists by hypothesis. Then the edges $e = \{(u_1, v_1)\} \cup (\{u_3, u_4, \ldots, u_{n+1}\} \times \{v_3, v_4, \ldots, v_{p+1}\})$ and $f = \{(w_1, v_1)\} \cup (\{w_2, w_3, \ldots, w_m\} \times \{v_3, v_4, \ldots, v_{p+1}\})$ of $H_1 \cong H_2$ are nonadjacent and $(u_1, v_1) \in e$, $(u_2, v_1) \in f$.

Case 2. $v_1 \neq v_2$

Subcase 1. $u_1 = u_2$

By hypothesis there exist edges e and f containing u_1 such that $e \cap f = \{u_1\}$. Let |e| = n, |f| = m. Suppose $e = \{x_1, x_2, \dots, x_{n-1}, u_1\}$, $f = \{y_1, y_2, \dots, y_{m-1}, u_1\}$.

Suppose there exists an edge g with |g| = p of H_2 containing both v_1 and v_2 . Let us suppose that $g = \{v_1, v_2, \ldots, v_p\}$. Now the edges $e_1 = \{(u_1, v_1)\} \cup (\{x_1, x_2, \ldots, x_{n-1}\} \times \{v_2, v_3, \ldots, v_p\})$ and

 $e_2 = \{(u_1, v_2)\} \cup (\{y_1, y_2, \dots, y_{m-1}\} \times \{v_1, v_3, \dots, v_p\}) \text{ of } H_1 \stackrel{\sim}{\times} H_2 \text{ are nonadjacent and } (u_1, v_1) \in e_1, (u_1, v_2) \in e_2.$

Suppose there exist no edge of H_2 containing both v_1 and v_2 . Let f_1 be an edge of H_2 with $|f_1| = p$ such that $v_1 \in f_1$ and f_2 be an edge of H_2 with $|f_2| = q$ such that $v_2 \in f_2$. Suppose $f_1 = \{v_1, v_3, v_4 \dots, v_{p+1}\}$ and $f_2 = \{w_1, w_2, \dots, w_q\}$ with $w_1 = v_2$. Now the edges $e_1 = \{(u_1, v_1)\} \cup (\{x_1, x_2, \dots, x_{n-1}\} \times \{v_3, v_4, \dots, v_{p+1}\})$ and $e_2 = \{(u_1, w_1)\} \cup (\{y_1, y_2, \dots, y_{m-1}\} \times \{w_2, w_3, \dots, w_q\})$ of $H_1 \cong H_2$ are nonadjacent and $(u_1, v_1) \in e_1$, $(u_1, v_2) \in e_2$.

Subcase 2. $u_1 \neq u_2$

As H_1 is Hausdorff, there exist nonadjacent edges e_1 and e_2 such that $u_1 \in e_1$ and $u_2 \in e_2$. Let $|e_1| = n$ and $|e_2| = m$. Suppose $e_1 = \{u_1, u_3, u_4, \ldots, u_{n+1}\}$ and $e_2 = \{w_1, w_2, \ldots, w_m\}$ with $w_1 = u_2$.

Suppose there exists an edge g with |g| = p of H_2 containing both v_1 and v_2 . Let us suppose $g = \{v_1, v_2, \ldots, v_p\}$. Then the edges $e = \{(u_1, v_1)\} \cup (\{u_3, u_4, \ldots, u_{n+1}\} \times \{v_2, v_3, \ldots, v_p\})$ and $f = \{(w_1, v_2)\} \cup (\{w_2, w_3, \ldots, w_m\} \times \{v_1, v_3, \ldots, v_p\})$ of $H_1 \cong H_2$ are nonadjacent and $(u_1, v_1) \in e$, $(u_2, v_2) \in f$.

Suppose there exist no edge of H_2 containing both v_1 and v_2 . Let g_1 be an edge of H_2 with $|g_1| = p$ such that $v_1 \in g_1$ and g_2 be an edge of H_2 with $|g_2| = q$ such that $v_2 \in g_2$. Let $g_1 = \{v_1, v_3, v_4 \dots, v_{p+1}\}$ and $g_2 = \{y_1, y_2, \dots, y_q\}$ with $y_1 = v_2$. Then the edges $e = \{(u_1, v_1)\} \cup (\{u_3, u_4, \dots, u_{n+1}\} \times \{v_3, v_4, \dots, v_{p+1}\})$ and $f = \{(w_1, y_1)\} \cup (\{w_2, w_3, \dots, w_m\} \times \{y_2, y_3, \dots, y_q\})$ of $H_1 \times H_2$ are nonadjacent and $(u_1, v_1) \in e, (u_2, v_2) \in f$.

5 Conclusion

In this paper we have discussed conditions under which minimal rank, maximal rank, non-rank, preserving direct product of two hypergraphs to be Hausdorff. It is proved that normal product and strong product of any two hypergraphs is always Hausdorff.

Acknowledgment

The first author acknowledge the financial support by University Grants Commission of India, under Faculty Development Programme.

References

- [1] Claude Berge, Hypergraphs: combinatorics of finite sets, vol. 45, Elsevier, 1984.
- [2] Claude Berge and Edward Minieka, Graphs and hypergraphs, vol. 7, North-Holland publishing company Amsterdam, 1973.
- [3] Alain Bretto, Hypergraph theory, Springer, 2013.
- [4] Carl Georg Heise, Konstantinos Panagiotou, Oleg Pikhurko, and Anusch Taraz, Coloring dembeddable k-uniform hypergraphs, Discrete & computational geometry 52 (2014), no. 4, 663–679.
- [5] Marc Hellmuth, Lydia Ostermeier, and Peter F Stadler, A survey on hypergraph products, Mathematics in Computer Science 6 (2012), no. 1, 1–32.
- [6] K Pearson and Tan Zhang, Eigenvalues on the adjacency tensor of products of hypergraphs, Int.J.Contemp.Math.Sciences 8 (2013), no. 4, 151–158.
- [7] RI Tyshkevich and Vadim E Zverovich, *Line hypergraphs*, Discrete Mathematics 161 (1996), no. 1, 265–283.
- [8] Vitaly Voloshin, Introduction to graph and hypergraph theory, Nova, 2009.
- Magnus Wahlström, Exact algorithms for finding minimum transversals in rank-3 hypergraphs, Journal of Algorithms 51 (2004), no. 2, 107–121.