Hausdorff Property of Minimal Rank, Maximal Rank and Non-Rank Preserving Direct Product of Hypergraphs

Seena $\mathrm{V}^{1, *}$, Raji Pilakkat ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of Calicut, Malappuram, Kerala-673 635, India
seenavclt@gmail.com, rajiunical@rediffmail.com

Abstract

A hypergraph $H=(V, \mathcal{E})$ is said to be a Hausdorff hypergraph if for any two distinct vertices u, v of V there exist hyperedges $e_{1}, e_{2} \in \mathcal{E}$ such that $u \in e_{1}, v \in e_{2}$ and $e_{1} \cap e_{2}=\emptyset$. In this paper we derive sufficient conditions for minimal rank, maximal rank, non-rank preserving direct products of two hypergraphs to be Hausdorff.

Mathematics Subject Classification: 05C65
Keywords: Hausdorff hypergraph, Minimal rank preserving direct product, Maximal rank preserving direct product, Non-rank preserving direct product.

1 Introduction

Hypergraphs are generalization of graphs, hence many of the definitions of graphs carry verbatim to hypergraphs. The basic idea of the hypergraph concept is to consider such a generalization of a graph in which any subset of a given set may be an edge rather than two-element subsets [9]. A hypergraph [2] H is a pair (V, \mathcal{E}), where V is a set of elements called nodes or vertices, and \mathcal{E} is a set of nonempty subsets of V called hyperedges or edges. Therefore, \mathcal{E} is a subset of $P(X) \backslash\{\emptyset\}$, where $P(X)$ is the power set of X. In drawing hypergraphs, each vertex is a point in the plane and each edge is a closed curve separating the respective subset from the remaining vertices. The cardinality of the finite set V, is denoted by $|V|$, is called the order [8] of the hypergraph. The number of edges is usually denoted by m or $m(H)$ [8].

A simple hypergraph [1] is a hypergraph with the property that if e_{i} and e_{j} are hyperedges of H with $e_{i} \subseteq e_{j}$, then $i=j$. Two vertices in a hypergraph are adjacent [9] if there is a hyperedge which contains both vertices. Two hyperedges in a hypergraph are incident [9] if their intersection is nonempty.

A k-uniform hypergraph [4] or a k-hypergraph is a hypergraph in which every edge consists of k vertices. So a 2-uniform hypergraph is a graph, a 3-uniform hypergraph is a collection of unordered triples, and so on. The $\operatorname{rank}[9] r(H)$ of a hypergraph is the maximum of the cardinalities of the edges in the hypergraph. The co-rank [9] $\operatorname{cr}(H)$ of a hypergraph is the minimum of the cardinalities of a hyperedge in the hypergraph. If $r(H)=\operatorname{cr}(H)=k$, then H is k-uniform. The degree [7] $d_{H}(v)$ of a vertex v in a hypergraph H is the number of edges of H that containing the vertex $v . H$ is k-regular if every vertex has degree k. The degree [3], $d(e)$ of a hyperedge, $e \in \mathcal{E}$ is its cardinality $|e|$.

A vertex of a hypergraph which is incident to no edges is called an isolated vertex. [9] The degree of an isolated vertex is trivially zero.

A hyperedge e of H with $|e|=1$ is called a loop; more specifically a hyperedge $e=\{v\}$ is a loop at the vertex v. A vertex of degree 1 is called a pendant vertex.

A simple hypergraph H with $|e|=2$ for each $e \in \mathcal{E}$ is a simple graph.
Let $H=(V, \mathcal{E})$ be a hypergraph. Any hypergraph $H^{\prime}=\left(V^{\prime}, \mathcal{E}^{\prime}\right)$ such that $V \subseteq V^{\prime}$ and $\mathcal{E} \subseteq \mathcal{E}^{\prime}$ is called a subhypergraph [8] of H.

[^0]Definition 1.1. [6] The cartesian product $H_{1} \square H_{2}$ of two hypergraphs $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=$ $\left(V_{2}, \mathcal{E}_{2}\right)$ is a hypergraph $H=(V, \mathcal{E})$ with vertex set $V=V_{1} \times V_{2}$ and edge set $\mathcal{E}=\left\{\{u\} \times f: u \in V_{1}, f \in \mathcal{E}_{2}\right\} \cup$ $\left\{e \times\{v\}: e \in \mathcal{E}_{1}, v \in V_{2}\right\}$.

Definition 1.2. A hypergraph $H=(V, \mathcal{E})$ is said to be a Hausdorff hypergraph if for any two distinct vertices u and v of V there exist hyperedges $e_{1}, e_{2} \in \mathcal{E}$ such that $u \in e_{1}$ and $v \in e_{2}$; and $e_{1} \cap e_{2}=\emptyset$.
Theorem 1.3. Let H_{1} and H_{2} be two hypergraphs. Then the cartesian product $H_{1} \square H_{2}$ of H_{1} and H_{2} is a Hausdorff hypergraph.

Through out this paper we consider only simple hypergraph with no isolated vertices.

2 Minimal Rank Preserving Direct Product

One of the interesting product of hypergraph is minimal rank preserving direct product.
Definition 2.1. [5] The Minimal Rank Preserving Direct Product $H_{1} \breve{\times} H_{2}$ of two hypergraphs $H_{1}=$ $\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ is a hypergraph with vertex set $V_{1} \times V_{2}$. A subset $e=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots\left(u_{r}, v_{r}\right)\right\}$ of $V_{1} \times V_{2}$ is an edge of $H_{1} \breve{\times} H_{2}$ if and only if

1. $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is an edge of H_{1} and $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a subset of an edge of H_{2}, or
2. $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is a subset of an edge of H_{1} and $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is an edge of H_{2}.

Let $e_{1}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be an edge of H_{1} and $e_{2}=\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$ be an edge of H_{2}. Then $e=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ is an edge of $H_{1} \breve{\times} H_{2}$ with cardinality $\min \left\{\left|e_{1}\right|,\left|e_{2}\right|\right\}$.

In this paper, we discuss the Hausdorff property, that is the separation of any two distinct vertices by nonadjacent edges of different product of hypergraphs $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$. For the sake of convenience we name the distinct vertices of product hypergraphs by (u_{1}, v_{1}) and (u_{2}, v_{2}).
Theorem 2.2. Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs. Then the minimal rank preserving direct product $H_{1} \times H_{2}$ of H_{1} and H_{2} is Hausdorff, provided the degree of each edge of the hypergraph $H_{1}\left(\right.$ or $\left.H_{2}\right)$ is different from 2.

Proof. Suppose the degree of each edge of the hypergraph H_{1} is different from 2. Consider any two distinct vertices of $H_{1} \times H_{2}$. Let it be $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}).
Case 1. $u_{1}=u_{2}, v_{1} \neq v_{2}$
Let $e=\left\{u_{1}=u_{2}, u_{3}, u_{4}, u_{5}, \ldots, u_{n+1}\right\}$. Note that $|e|=n$ and by hypothesis either $n=1$ or $n \geq 3$.
If $n=1$, then $e_{1}=\left\{\left(u_{1}, v_{1}\right)\right\}$ and $e_{2}=\left\{\left(u_{1}, v_{2}\right)\right\}$ are two nonadjacent edges of $H_{1} \breve{\times} H_{2}$.
If $n \geq 3$, then we have the following two subcases.
Subcase 1. There exists an edge f, with $|f|=m$, of H_{2} which contains both v_{1} and v_{2}.
Let $f=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. Suppose $n \geq m$. Then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{2}\right),\left(u_{4}, v_{3}\right) \ldots,\left(u_{m+1}, v_{m}\right)\right\}$ and $e_{2}=\left\{\left(u_{1}, v_{2}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right), \ldots,\left(u_{m}, v_{m}\right),\left(u_{m+1}, v_{1}\right)\right\}$ of $H_{1} \breve{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in$ $e_{1},\left(u_{1}, v_{2}\right) \in e_{2}$.

Subcase 2. There exist no edge of H_{2} containing both v_{1} and v_{2}.
Let f_{1} be an edge of H_{2} with $\left|f_{1}\right|=m$ such that $v_{1} \in f_{1}$ and f_{2} be an edge of H_{2} with $\left|f_{2}\right|=p$ such that $v_{2} \in f_{2}$. Suppose $n \geq m \geq p$ and $\left|f_{1} \cap f_{2}\right|=k, 0 \leq k \leq(p-1)$. Let $f_{1}=\left\{v_{1}, v_{3}, \ldots, v_{k+2}, \ldots, v_{m+1}\right\}$ and $f_{2}=\left\{w_{1}, w_{2}, \ldots, w_{k}, w_{k+1} \ldots, w_{q}\right\}$ with $w_{1}=v_{2}$. If $k \geq 1$, let $w_{2}=v_{3}, w_{3}=v_{4} \ldots, w_{k+1}=v_{k+2}$.

Then the edges

$$
e_{1}= \begin{cases}\left\{\left(u_{1}, v_{1}\right)\right\} & \text { if } m=1 \\ \left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right), \ldots,\left(u_{m+1}, v_{m+1}\right)\right\} & \text { otherwise }\end{cases}
$$

and

$$
e_{2}= \begin{cases}\left\{\left(u_{1}, w_{1}\right)\right\} & \text { if } p=1 \\ \left\{\left(u_{1}, w_{1}\right),\left(u_{4}, w_{2}\right)\right\} & \text { if } p=2 \\ \left\{\left(u_{1}, w_{1}\right),\left(u_{3}, w_{3}\right),\left(u_{4}, w_{4}\right),\left(u_{5}, w_{5}\right), \ldots,\left(u_{p}, w_{p}\right),\left(u_{p+1}, w_{2}\right)\right\} & \text { otherwise }\end{cases}
$$

of $H_{1} \check{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{1}, v_{2}\right) \in e_{2}$.

Case 2. $u_{1} \neq u_{2}, v_{1} \neq v_{2}$
Subcase 1. There exists an edge $e=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ of H_{1} containing both u_{1} and u_{2}.
In this case $n \geq 3$.
Suppose there exists an edge $f=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ of H_{2} containing both v_{1} and v_{2}.
Without loss of generality assume that $n \geq m$. Set

$$
e_{1}= \begin{cases}\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{2}\right)\right\} & \text { if } m=2 \\ \left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{4}\right),\left(u_{4}, v_{5}\right) \ldots,\left(u_{m-1}, v_{m}\right)\left(u_{m}, v_{2}\right)\right\} & \text { otherwise }\end{cases}
$$

and

$$
e_{2}= \begin{cases}\left\{\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right)\right\} & \text { if } m=2 \\ \left\{\left(u_{1}, v_{m}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right),\left(u_{5}, v_{5}\right), \ldots,\left(u_{m-1}, v_{m-1}\right),\left(u_{m}, v_{1}\right)\right\} & \text { otherwise }\end{cases}
$$

Then e_{1} and e_{2} are two nonadjacent edges of $H_{1} \breve{\times} H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{2}, v_{2}\right) \in e_{2}$.
Suppose there exists no edge of H_{2} containing both v_{1} and v_{2}.
Let f_{1} be an edge of H_{2} with $\left|f_{1}\right|=p$, containing v_{1} and f_{2} be an edge of H_{2} with $\left|f_{2}\right|=q$, containing v_{2}. Suppose $n \geq p \geq q$. Consider a subset A of e containing u_{1} and u_{2} with cardinality p Let $A=\left\{u_{1}, u_{2}, \ldots, u_{q}, \ldots, u_{p}\right\}$ and let $B=\left\{u_{1}, u_{2}, \ldots, u_{q}\right\}$. Suppose $\left|f_{1} \cap f_{2}\right|=k$, where $0 \leq k \leq(q-1)$. Let $f_{1}=\left\{v_{1}, v_{3}, \ldots, v_{k+2}, \ldots, v_{p+1}\right\}$ and $f_{2}=\left\{w_{1}, w_{2}, \ldots, w_{k}, w_{k+1} \ldots, w_{q}\right\}$ with $w_{1}=v_{2}$. If $k \geq 1$, let $w_{2}=v_{3}, w_{3}=v_{4} \ldots, w_{k+1}=v_{k+2}$.

Set

$$
e_{1}= \begin{cases}\left\{\left(u_{1}, v_{1}\right)\right\} & \text { if } p=1 \\ \left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{4}\right) \ldots,\left(u_{p}, v_{p+1}\right)\right\} & \text { otherwise }\end{cases}
$$

and

$$
e_{2}= \begin{cases}\left\{\left(u_{2}, w_{1}\right)\right\} & \text { if } q=1 \\ \left\{\left(u_{2}, w_{1}\right),\left(u_{3}, w_{2}\right)\right\} & \text { if } q=2 \\ \left\{\left(u_{1}, w_{q}\right),\left(u_{2}, w_{1}\right),\left(u_{3}, w_{2}\right),\left(u_{4}, w_{3}\right), \ldots,\left(u_{q}, w_{q-1}\right)\right\} & \text { otherwise }\end{cases}
$$

Then e_{1} and e_{2} are two nonadjacent edges of $H_{1} \breve{\times} H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{2}, v_{2}\right) \in e_{2}$.
Subcase 2. There exists no edge of H_{1} containing both u_{1} and u_{2}.
Let g_{1} be an edge of H_{1} with $\left|g_{1}\right|=n$, containing u_{1} and g_{2} be an edge of H_{1} with $\left|g_{2}\right|=m$ containing u_{2}. Let $n \geq m$ and $\left|g_{1} \cap g_{2}\right|=k, 0 \leq k \leq(m-1)$. Let $g_{1}=\left\{u_{1}, u_{3}, \ldots, u_{k+2}, \ldots, u_{n+1}\right\}$ and $g_{2}=\left\{x_{1}, x_{2}, \ldots, x_{k}, x_{k+1} \ldots, x_{m}\right\}$ with $x_{1}=u_{2}$. If $k \geq 1$, let $x_{2}=u_{3}, x_{3}=u_{4} \ldots, x_{k+1}=u_{k+2}$.

Suppose there exists an edge f of H_{2} with $|f|=p$, containing both v_{1} and v_{2}.
Then as in the proof of Subcase 1 of Case 2, we can prove that there exist two nonadjacent edges e_{1} and e_{2} in $H_{1} \breve{\times} H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{2}, v_{2}\right) \in e_{2}$.

Suppose there exists no edge of H_{2} containing both v_{1} and v_{2}.
Let f_{1} be an edge of H_{2} with $\left|f_{1}\right|=p$, containing v_{1} and f_{2} an edge of H_{2} with $\left|f_{2}\right|=q$, containing v_{2}. Assume $n \geq p \geq q$ and $m \geq q$. Let $\left|f_{1} \cap f_{2}\right|=l, 0 \leq l \leq(q-1)$. Let $f_{1}=\left\{v_{1}, v_{3}, \ldots, v_{l+2}, \ldots, v_{p+1}\right\}$ and $f_{2}=\left\{y_{1}, y_{2}, \ldots, y_{l}, y_{l+1} \ldots, y_{q}\right\}$ with $y_{1}=v_{2}$. If $l \geq 1$, let $y_{2}=v_{3}, y_{3}=v_{4} \ldots, y_{l+1}=v_{l+2}$.

Set an edge e_{1} of $H_{1} \breve{\times} H_{2}$ with cardinality p as,

$$
e_{1}= \begin{cases}\left\{\left(u_{1}, v_{1}\right)\right\} & \text { if } p=1 \\ \left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right), \ldots,\left(u_{p}, v_{p}\right),\left(u_{p+1}, v_{p+1}\right)\right\} & \text { otherwise }\end{cases}
$$

and an edge e_{2} with cardinality q as,

$$
e_{2}= \begin{cases}\left\{\left(x_{1}, y_{1}\right)\right\} & \text { if } q=1 \\ \left\{\left(x_{1}, y_{1}\right),\left(x_{3}, y_{2}\right)\right\} & \text { if } q=2 \\ \left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{3}\right),\left(x_{3}, y_{4}\right) \ldots,\left(x_{q-1}, y_{q}\right),\left(x_{q}, y_{2}\right)\right\} & \text { otherwise }\end{cases}
$$

Then e_{1} and e_{2} are two nonadjacent edges of $H_{1} \breve{\times} H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{2}, v_{2}\right) \in e_{2}$.
The other inequalities between n, m, p and q in cases 1 and 2 can be dealt in a similar way.

Remark 2.3. From the proof of Theorem 2.2 we can conclude the following
For any two hypergraphs $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ and for any two distinct vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) of $H_{1} \breve{\times} H_{2}$, if there exists an edge e of H_{1} containing u_{1} or u_{2} or both and an edge f of H_{2} containing v_{1} or v_{2} or both, then there exists two nonadjacent edges e_{1} and e_{2} in $H_{1} \breve{\times} H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{2}, v_{2}\right) \in e_{2}$, provided $|e| \neq 2$ or $|f| \neq 2$.
Remark 2.4. Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs. If both H_{1} and H_{2} contain edges of degree 2, then the minimal rank preserving direct product $H_{1} \breve{\times} H_{2}$ of H_{1} and H_{2} need not be Hausdorff.(See Figure 1.)

H_{1}

H_{1}
H_{2}

$$
H_{1} \overline{\times} H_{2}
$$

H_{1}

H_{2}

$H_{1} \breve{\times} H_{2}$

Figure 1: The minimal rank preserving direct product of H_{1} and H_{2}.
Remark 2.5. Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs. If the degree of each vertex in any edge of degree 2 of the hypergraph H_{1} (or H_{2}) is different from 1 , then the minimal rank preserving direct product $H_{1} \breve{\times} H_{2}$ of H_{1} and H_{2} is Hausdorff. (See Figure 2).

Figure 2: The minimal rank preserving direct product of H_{1} and H_{2}.

Theorem 2.6. Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs. Then the minimal rank preserving direct product $H_{1} \widetilde{\times} H_{2}$ of H_{1} and H_{2} is Hausdorff provided degree of each vertex in any edge of degree 2 of the hypergraph $H_{1}\left(\right.$ or $\left.H_{2}\right)$ is different from 1.

Proof. Suppose the degree of each vertex of degree 2 of the hypergraph H_{1} is different from 1. Let $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}), be two distinct vertices of $H_{1} \breve{\times} H_{2}$..

By remark 2.3 we need only to consider the cases where the edges considered are of degree 2.
Case 1. $u_{1}=u_{2}, v_{1} \neq v_{2}$
Let $e=\left\{u_{1}=u_{2}, u_{3}\right\}$ be an edge of H_{1} and f be an edge of H_{2} containing v_{1}. By hypothesis of the theorem there exists another edge h containing u_{1} and a vertex x different from u_{3}.

If $v_{2} \in f$, then $f=\left\{v_{1}, v_{2}\right\}$. In this case the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{2}\right)\right\}$ and $e_{2}=\left\{\left(u_{1}, v_{2}\right),\left(x, v_{1}\right)\right\}$ of $H_{1} \breve{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{1}, v_{2}\right) \in e_{2}$.

If $v_{2} \notin f$, then let $f=\left\{v_{1}, v_{3}\right\}$, where $v_{3} \neq v_{2}$ and let $g=\left\{w_{1}=v_{2}, w_{2}\right\}$ be an edge of H_{2} containing v_{2}. Then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right)\right\}$ and $e_{2}=\left\{\left(u_{1}, w_{1}\right),\left(x, w_{2}\right)\right\}$ of $H_{1} \breve{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{1}, v_{2}\right) \in e_{2}$.

Case 2. $u_{1} \neq u_{2}, v_{1} \neq v_{2}$
Subcase 1. There exists an edge $e=\left\{u_{1}, u_{2}\right\}$ of H_{1} containing both u_{1} and u_{2}.
Suppose there exists an edge $f=\left\{v_{1}, v_{2}\right\}$ of H_{2} containing both v_{1} and v_{2}.
By hypothesis of the theorem there exists an edge h_{1} containing u_{1} and a vertex x different from u_{2} and another edge h_{2} containing u_{2} and a vertex y different from u_{1}. Then $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(x, v_{2}\right)\right\}$ and $e_{2}=\left\{\left(y, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}$ are two nonadjacent edges of $H_{1} \breve{\times} H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{2}, v_{2}\right) \in e_{2}$.

Suppose there exist no edge of H_{2} containing both v_{1} and v_{2}.
Let $f=\left\{v_{1}, v_{3}\right\}$ and $g=\left\{w_{1}=v_{2}, w_{2}\right\}$ be two edges of H_{2}. Set $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{3}\right)\right\}$ and $e_{2}=\left\{\left(u_{1}, w_{2}\right),\left(u_{2}, w_{1}\right)\right\}$. Then e_{1} and e_{2} are two nonadjacent edges of $H_{1} \breve{\times} H_{2}$ and $\left(u_{1}, v_{1}\right) \in e_{1}$, $\left(u_{2}, v_{2}\right) \in e_{2}$.

Subcase 2. There exists no edge of H_{1} containing both u_{1} and u_{2}.
Let $e=\left\{u_{1}, u_{3}\right\}$ and $g=\left\{x_{1}=u_{2}, x_{2}\right\}$ be two edges of H_{1}
Suppose there exists an edge of H_{2} containing both v_{1} and v_{2}.
Then as in the proof of Subcase 1 of Case 2, we can prove that there exist two nonadjacent edges e_{1} and e_{2} in $H_{1} \times H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{2}, v_{2}\right) \in e_{2}$.

Suppose there exist no edge of H_{2} containing both v_{1} and v_{2}.
Let $f=\left\{v_{1}, v_{3}\right\}$ and $h=\left\{y_{1}=v_{2}, y_{2}\right\}$ be two edges of H_{2}.
Suppose $e \cap g \neq \emptyset$, then $u_{3}=x_{2}$. By hypothesis of the theorem there exists an edge g_{1} containing u_{1} and a vertex x different from u_{3}. Then $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(x, v_{3}\right)\right\}$ and $e_{2}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$ are two nonadjacent edges of $H_{1} \overline{\times} H_{2}$ and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{2}, v_{2}\right) \in e_{2}$. Suppose $e \cap g=\emptyset$, then
$e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right)\right\}$ and $e_{2}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$ are two nonadjacent edges of $H_{1} \breve{\times} H_{2}$ and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{2}, v_{2}\right) \in e_{2}$.

Hence the theorem.
Let H_{1} and H_{2} be two hypergraphs, if all the edges of H_{1} or H_{2} are loops, then all the edges of $H_{1} \breve{\times} H_{2}$ are loops. As a consequence we have the following proposition.

Proposition 2.7. Let H_{1} and H_{2} be two hypergraphs. If all the edges of one of them are loops, then the minimal rank preserving direct product $H_{1} \breve{\times} H_{2}$ of H_{1} and H_{2} is Hausdorff.

Definition 2.8. The Normal product [5] $H_{1} \breve{\boxtimes} H_{2}$ of two hypergraphs $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=$ $\left(V_{2}, \mathcal{E}_{2}\right)$ is a hypergraph with vertex set $V_{1} \times V_{2}$ and a subset $e=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ of $V_{1} \times V_{2}$ is an edge of $H_{1} \boxtimes H_{2}$ if,

1. $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is an edge of H_{1} and $v_{1}=v_{2}=\ldots=v_{n} \in V_{2}$, or
2. $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a subset of an edge of H_{2} and $u_{1}=u_{2}=\ldots=u_{n} \in V_{1}$, or
3. $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is an edge of H_{1} and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a subset of an edge of H_{2}, or
4. $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an edge of H_{2} and $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a subset of an edge of H_{1}.

Remark 2.9. Cartesian product $H_{1} \square H_{2}$ of two hypergraphs H_{1} and H_{2} is a subhypergraph of their normal product $H_{1} \breve{\boxtimes} H_{2}$ with $V\left(H_{1} \square H_{2}\right)=V\left(H_{1} \boxtimes H_{2}\right)$.

Theorem 2.10. Let H_{1} and H_{2} be two hypergraphs. Then the normal product $H_{1} \boxtimes H_{2}$ of H_{1} and H_{2} is Hausdorff.

3 Maximal Rank Preserving Direct Product

Definition 3.1. [5] The Maximal Rank Preserving Direct Product $H_{1} \times H_{2}$ of two hypergraphs $H_{1}=$ $\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ is a hypergraph with vertex set $V_{1} \times V_{2}$. A subset $e=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{r}, v_{r}\right)\right\}$ of $V_{1} \times V_{2}$ is an edge of $H_{1} \times H_{2}$ if,

1. $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is an edge of H_{1} and there is an edge $f \in \mathcal{E}_{2}$ of H_{2} such that $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a multiset ${ }^{2}$ of elements of f, and $f \subseteq\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, or
2. $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is an edge of H_{2} and there is an edge $e \in \mathcal{E}_{1}$ of H_{1} such that $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is a multiset of elements of e, and $e \subseteq\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$.

Let $e_{1}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be an edge of H_{1} and $e_{2}=\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}$ be an edge of H_{2}. Then $e=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ is an edge of $H_{1} \times H_{2}$ with cardinality max $\left|e_{1}\right|,\left|e_{2}\right|$.
Remark 3.2. Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs. Then the maximal rank preserving direct product $H_{1} \times H_{2}$ of H_{1} and H_{2} is need not be Hausdorff if one of the hypergraph contains a loop.(See Figure 3.)

Figure 3: The maximal rank preserving direct product of H_{1} and H_{2}.

[^1]Theorem 3.3. Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs with no loops. Then the maximal rank preserving direct product $H_{1} \times H_{2}$ of H_{1} and H_{2} is Hausdorff provided degree of each edge of the hypergraph $H_{1}\left(\right.$ or $\left.H_{2}\right)$ is different from 2.

Proof. Suppose the degree of each edge of the hypergraph H_{1} is different from 2.
Consider two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of $H_{1} \overline{\times} H_{2}$.
Case 1. $u_{1}=u_{2}, v_{1} \neq v_{2}$
Let $e=\left\{u_{1}, u_{3}, u_{4} \ldots u_{n+1}\right\}$ be an edge of H_{1} containing u_{1} with $|e|=n$.
Subcase 1. There exists an edge f, with $|f|=m$, of H_{2} which contains both v_{1} and v_{2}.
Let $f=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. Without loss of generality assume that $n \geq m$.
If $n=m$, then $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{2}\right),\left(u_{4}, v_{3}\right) \ldots,\left(u_{n+1}, v_{m}\right)\right\}$ and $e_{2}=\left\{\left(u_{1}, v_{2}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right) \ldots\right.$,
$\left.\left(u_{n}, v_{m}\right),\left(u_{n+1}, v_{1}\right)\right\}$ are nonadjacent edges of $H_{1} \mathcal{X} H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{1}, v_{2}\right) \in e_{2}$.
If $n>m$, then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{2}\right),\left(u_{4}, v_{3}\right) \ldots,\left(u_{m+1}, v_{m}\right),\left(u_{m+2}, v_{m}\right), \ldots,\left(u_{n+1}, v_{m}\right)\right\}$ and $e_{2}=\left\{\left(u_{1}, v_{2}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right), \ldots,\left(u_{m}, v_{m}\right),\left(u_{m+1}, v_{1}\right),\left(u_{m+2}, v_{1}\right) \ldots,\left(u_{n+1}, v_{1}\right)\right\}$ of $H_{1} \times H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{1}, v_{2}\right) \in e_{2}$.

Subcase 2. There exist no edge of H_{2} containing both v_{1} and v_{2}.
Let f_{1} be an edge of H_{2} with $\left|f_{1}\right|=p$, containing v_{1} and f_{2} be an edge of H_{2} with $\left|f_{2}\right|=q$, containing v_{2}.

Assume $p \geq q$ and $\left|f_{1} \cap f_{2}\right|=k, 0 \leq k \leq(q-1)$. Let $f_{1}=\left\{v_{1}, v_{3}, \ldots, v_{k+2}, \ldots, v_{p+1}\right\}$ and $f_{2}=\left\{w_{1}, w_{2}, \ldots, w_{k+1}, \ldots, w_{q}\right\}$ with $w_{1}=v_{2}$. If $k \geq 1$, let $w_{2}=v_{3}, w_{3}=v_{4}, \ldots, w_{k+1}=v_{k+2}$.

If $n=p=q$, then $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right) \ldots,\left(u_{n+1}, v_{n+1}\right)\right\}$ and $e_{2}=\left\{\left(u_{1}, w_{1}\right),\left(u_{3}, w_{3}\right)\right.$, $\left.\left(u_{4}, w_{4}\right),\left(u_{4}, w_{4}\right), \ldots,\left(u_{n}, w_{n}\right),\left(u_{n+1}, w_{2}\right)\right\}$ are nonadjacent edges of $H_{1} \overline{\times} H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{1}, v_{2}\right) \in e_{2}$.

If $n=p>q$, then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right) \ldots,\left(u_{n+1}, v_{n+1}\right)\right\}$ and

$$
e_{2}= \begin{cases}\left\{\left(u_{1}, w_{1}\right),\left(u_{3}, w_{1}\right),\left(u_{4}, w_{2}\right),\left(u_{5}, w_{1}\right),\left(u_{6}, w_{1}\right), \ldots,\left(u_{n+1}, w_{1}\right)\right\} & \text { if } q=2 \\ \left\{\left(u_{1}, w_{1}\right),\left(u_{3}, w_{3}\right),\left(u_{4}, w_{4}\right),\left(u_{5}, w_{5}\right), \ldots,\left(u_{q}, w_{q}\right),\left(u_{q+1}, w_{2}\right),\left(u_{q+2}, w_{1}\right),\right. & \\ \left.\left(u_{q+3}, w_{1}\right), \ldots,\left(u_{n+1}, w_{1}\right)\right\} & \text { if } q \neq 2\end{cases}
$$

of $H_{1} \overline{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{1}, v_{2}\right) \in e_{2}$.
If $n>p$, then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right) \ldots,\left(u_{p+1}, v_{p+1}\right),\left(u_{p+2}, v_{1}\right), \ldots,\left(u_{n+1}, v_{1}\right)\right\}$ and

$$
e_{2}= \begin{cases}\left\{\left(u_{1}, w_{1}\right),\left(u_{3}, w_{1}\right),\left(u_{4}, w_{2}\right),\left(u_{5}, w_{1}\right),\left(u_{6}, w_{1}\right), \ldots,\left(u_{n+1}, w_{1}\right)\right\} & \text { if } q=2 \\ \left\{\left(u_{1}, w_{1}\right),\left(u_{3}, w_{3}\right),\left(u_{4}, w_{4}\right),\left(u_{5}, w_{5}\right), \ldots,\left(u_{q}, w_{q}\right),\left(u_{q+1}, w_{2}\right),\left(u_{q+2}, w_{1}\right),\right. & \\ \left.\left(u_{q+3}, w_{1}\right), \ldots,\left(u_{n+1}, w_{1}\right)\right\} & \text { if } q \neq 2\end{cases}
$$

are nonadjacent edges of $H_{1} \overline{\times} H_{2}$ and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{1}, v_{2}\right) \in e_{2}$.
Case 2. $u_{1} \neq u_{2}, v_{1} \neq v_{2}$
Subcase 1. There exists an edge e of H_{1} with $|e|=n$, containing both u_{1} and u_{2}.
Let $e=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
Suppose there exists an edge f of H_{2} with $|f|=m$, containing both v_{1} and v_{2}. Let $f=$ $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$.

If $n=m$, then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{4}\right),\left(u_{4}, v_{5}\right), \ldots,\left(u_{n-1}, v_{n}\right),\left(u_{n}, v_{2}\right)\right\}$ and

$$
e_{2}= \begin{cases}\left\{\left(u_{1}, v_{3}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right)\right\} & \text { if } m=3 \\ \left\{\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right),\left(u_{4}, v_{3}\right),\left(u_{5}, v_{4}\right),\left(u_{6}, v_{5}\right), \ldots,\left(u_{n}, v_{m-1}\right),\left(u_{1}, v_{m}\right)\right\} & \text { if } m \neq 3\end{cases}
$$

of $H_{1} \overline{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{2}, v_{2}\right) \in e_{2}$.
If $n>m$, then the edges

$$
e_{1}= \begin{cases}\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{2}\right),\left(u_{4}, v_{2}\right), \ldots,\left(u_{n}, v_{2}\right)\right\} & \text { if } m=2 \\ \left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{4}\right),\left(u_{4}, v_{5}\right), \ldots,\left(u_{m-1}, v_{m}\right),\right. & \\ \left.\left(u_{m}, v_{2}\right),\left(u_{m+1}, v_{2}\right),\left(u_{m+2}, v_{2}\right), \ldots,\left(u_{n}, v_{2}\right)\right\} & \text { if } m \neq 2\end{cases}
$$

and

$$
e_{2}= \begin{cases}\left\{\left(u_{1}, v_{2}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right),\left(u_{4}, v_{1}\right),\left(u_{5}, v_{1}\right) \ldots,\left(u_{n}, v_{1}\right)\right\} & \text { if } m=2 \\ \left\{\left(u_{1}, v_{3}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right),\left(u_{4}, v_{1}\right),\left(u_{5}, v_{1}\right) \ldots,\left(u_{n}, v_{1}\right)\right\} & \text { if } m=3 \\ \left\{\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right),\left(u_{4}, v_{3}\right),\left(u_{5}, v_{4}\right),\left(u_{6}, v_{5}\right), \ldots,\left(u_{m}, v_{m-1}\right),\right. & \\ \left.\left(u_{1}, v_{m}\right),\left(u_{m+1}, v_{1}\right),\left(u_{m+2}, v_{1}\right) \ldots,\left(u_{n}, v_{1}\right)\right\} & \text { otherwise }\end{cases}
$$

of $H_{1} \overline{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1}$; and $\left(u_{2}, v_{2}\right) \in e_{2}$.
Suppose there exists no edge of H_{2} containing both v_{1} and v_{2}.
Let f_{1} be an edge of H_{2} with $\left|f_{1}\right|=p$ such that $v_{1} \in f_{1}$ and f_{2} be an edge of H_{2} with $\left|f_{2}\right|=q$ such that $v_{2} \in f_{2}$.

Assume $p \geq q$ and $\left|f_{1} \cap f_{2}\right|=k, 0 \leq k \leq(q-1)$. Let $f_{1}=\left\{v_{1}, v_{3}, v_{4} \ldots, v_{k+2}, \ldots, v_{p+1}\right\}$ and $f_{2}=\left\{w_{1}, w_{2}, \ldots, w_{k+1}, \ldots, w_{q}\right\}$ with $w_{1}=v_{2}$. If $k \geq 1$, let $w_{2}=v_{3}, w_{3}=v_{4}, \ldots, w_{k+1}=v_{k+2}$.

If $n=p=q$, then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{4}\right) \ldots,\left(u_{n}, v_{n+1}\right)\right\}$ and $e_{2}=\left\{\left(u_{2}, w_{1}\right),\left(u_{3}, w_{2}\right)\right.$, $\left.\left(u_{4}, w_{3}\right), \ldots,\left(u_{n}, w_{n-1}\right),\left(u_{1}, w_{n}\right)\right\}$ of $H_{1} \overline{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{2}, v_{2}\right) \in e_{2}$.

If $n=p>q$, then $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{4}\right) \ldots,\left(u_{n}, v_{n+1}\right)\right\}$ and $e_{2}=\left\{\left(u_{2}, w_{1}\right),\left(u_{3}, w_{2}\right)\right.$, $\left.\left(u_{4}, w_{3}\right), \ldots,\left(u_{q}, w_{q-1}\right)\left(u_{1}, w_{q}\right),\left(u_{q+1}, w_{1}\right),\left(u_{q+2}, w_{1}\right), \ldots,\left(u_{n}, w_{1}\right)\right\}$ are nonadjacent edges of $H_{1} \times H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{2}, v_{2}\right) \in e_{2}$.

If $n>p$, then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{3}\right),\left(u_{3}, v_{4}\right) \ldots,\left(u_{p}, v_{p+1}\right),\left(u_{p+1}, v_{1}\right),\left(u_{p+2}, v_{1}\right), \ldots,\left(u_{n}, v_{1}\right)\right\}$ and $e_{2}=\left\{\left(u_{2}, w_{1}\right),\left(u_{3}, w_{2}\right),\left(u_{4}, w_{3}\right), \ldots,\left(u_{q}, w_{q-1}\right),\left(u_{1}, w_{q}\right),\left(u_{q+1}, w_{1}\right),\left(u_{q+2}, w_{1}\right), \ldots,\left(u_{n}, w_{1}\right)\right\}$ of $H_{1} \overline{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1}$; and $\left(u_{2}, v_{2}\right) \in e_{2}$.
Subcase 2. There exists no edge of H_{1} containing both u_{1} and u_{2}.
Let g_{1} be an edge of H_{1} with $\left|g_{1}\right|=n$, containing u_{1} and g_{2} be an edge of H_{1} with $\left|g_{2}\right|=m$ containing u_{2}. Without loss of generality assume that $n \geq m$. Let $\left|g_{1} \cap g_{2}\right|=k, 0 \leq k \leq(m-1)$. Let $g_{1}=\left\{u_{1}, u_{3}, u_{4}, \ldots, u_{k+2}, \ldots, u_{n+1}\right\}$ and $g_{2}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k+1}, \ldots, x_{m}\right\}$ with $x_{1}=u_{2}$. If $k \geq 1$, let $x_{2}=u_{3}, x_{3}=u_{4}, \ldots, x_{k+1}=u_{k+2}$.

Suppose there exists an edge f of H_{2} with $|f|=p$, containing both v_{1} and v_{2}.
Then as in the proof of Subcase 1 of Case 2, we can prove that there exist two nonadjacent edges e_{1} and e_{2} of $H_{1} \times H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{2}, v_{2}\right) \in e_{2}$.

Suppose there exists no edge of H_{2} containing both v_{1} and v_{2}.
Let f_{1} be an edge of H_{2} with $\left|f_{1}\right|=p$ such that $v_{1} \in f_{1}$ and f_{2} be an edge of H_{2} with $\left|f_{2}\right|=q$ such that $v_{2} \in f_{2}$.

Assume $p \geq q$ and $\left|f_{1} \cap f_{2}\right|=t, 0 \leq t \leq(q-1)$. Let $f_{1}=\left\{v_{1}, v_{3}, v_{4}, \ldots, v_{t+2}, \ldots, v_{p+1}\right\}$ and $f_{2}=\left\{y_{1}, y_{2}, \ldots, y_{t+1}, \ldots, y_{q}\right\}$ with $y_{1}=v_{2}$. If $t \geq 1$, let $y_{2}=v_{3}, y_{3}=v_{4}, \ldots, y_{t+1}=v_{t+2}$. Then $\left(u_{2}, v_{2}\right)=\left(x_{1}, y_{1}\right)$.

If $n=m$, then we have to consider four cases $n=p, m=q ; n>p, m=q ; n=p, m>q$ and $n>p, m>q$.

Suppose $n=p, m=q$. Then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right), \ldots,\left(u_{n+1}, v_{n+1}\right)\right\}$ and $e_{2}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{3}\right),\left(x_{3}, y_{4}\right),\left(x_{4}, y_{5}\right), \ldots,\left(x_{m-1}, y_{m}\right),\left(x_{m}, y_{2}\right)\right\}$ of $H_{1} \overline{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(x_{1}, y_{1}\right) \in e_{2}$.

Suppose $n=p, m>q$. Then $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{4}\right), \ldots,\left(u_{n+1}, v_{n+1}\right)\right\}$ and

$$
e_{2}= \begin{cases}\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{1}\right),\left(x_{3}, y_{2}\right),\left(x_{4}, y_{2}\right), \ldots,\left(x_{m-1}, y_{2}\right),\left(x_{m}, y_{2}\right)\right\} & \text { if } q=2 \\ \left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{3}\right),\left(x_{3}, y_{4}\right),\left(x_{4}, y_{5}\right), \ldots,\left(x_{q-1}, y_{q}\right),\left(x_{q}, y_{2}\right),\right. & \\ \left.\left(x_{q+1}, y_{2}\right),\left(x_{q+2}, y_{2}\right), \ldots,\left(x_{m}, y_{2}\right)\right\} & \text { if } q \neq 2\end{cases}
$$

Suppose $n>p, m=q$. Then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right), \ldots,\left(u_{p}, v_{p}\right),\left(u_{p+1}, v_{p+1}\right),\left(u_{p+2}, v_{1}\right)\right.$, $\left.\left(u_{p+3}, v_{1}\right) \ldots,\left(u_{n+1}, v_{1}\right)\right\}$ and $e_{2}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{3}\right),\left(x_{3}, y_{4}\right),\left(x_{4}, y_{5}\right), \ldots,\left(x_{m-1}, y_{m}\right),\left(x_{m}, y_{2}\right)\right\}$ of $H_{1} \bar{x}$ H_{2} are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(x_{1}, y_{1}\right) \in e_{2}$.

Suppose $n>p, m>q$. Then the edges

$$
\begin{aligned}
& e_{1}= \begin{cases}\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right),\left(u_{4}, v_{1}\right),\left(u_{5}, v_{1}\right), \ldots,\left(u_{n+1}, v_{1}\right)\right\} & \text { if } p=2 \\
\left\{\left(u_{1}, v_{1}\right),\left(u_{3}, v_{3}\right), \ldots,\left(u_{p}, v_{p}\right),\left(u_{p+1}, v_{p+1}\right),\left(u_{p+2}, v_{1}\right),\right. & \\
\left.\left(u_{p+3}, v_{1}\right) \ldots,\left(u_{n+1}, v_{1}\right)\right\} & \text { if } p \neq 2\end{cases} \\
& e_{2}= \begin{cases}\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{1}\right),\left(x_{3}, y_{2}\right),\left(x_{4}, y_{2}\right), \ldots,\left(x_{m}, y_{2}\right)\right\} & \text { if } q=2 \\
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{3}\right),\left(x_{3}, y_{4}\right),\left(x_{4}, y_{5}\right), \ldots,\left(x_{q-1}, y_{q}\right),\right. & \\
\left.\left(x_{q}, y_{2}\right),\left(x_{q+1}, y_{2}\right),\left(x_{q+2}, y_{2}\right), \ldots,\left(x_{m}, y_{2}\right)\right\} & \text { if } q \neq 2\end{cases}
\end{aligned}
$$

of $H_{1} \overline{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(x_{1}, y_{1}\right) \in e_{2}$.
Similarly, if $n>m$, we can show that there exists two nonadjacent edges e_{1} and e_{2} in $H_{1} \times H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1},\left(x_{1}, y_{1}\right) \in e_{2}$.

The other inequalities between n, m, p and q in cases 1 and 2 can be dealt in a similar way.
Remark 3.4. As in the minimal rank preserving direct product here also we have, for any two hypergraphs $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ with no loops and for any two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of $H_{1} \times H_{2}$, if there exists an edge e of H_{1} containing u_{1} or u_{2} or both and an edge f of H_{2} containing v_{1} or v_{2} or both, then there exists two nonadjacent edges e_{1} and e_{2} in $H_{1} \overline{\times} H_{2}$ such that $\left(u_{1}, v_{1}\right) \in e_{1}$ and $\left(u_{2}, v_{2}\right) \in e_{2}$, provided $|e| \neq 2$ or $|f| \neq 2$.

Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs with no loops. The edges of $H_{1} \times H_{2}$ and $H_{1} \breve{\times} H_{2}$ corresponding to the edges of degree 2 in H_{1} and H_{2} are same. Hence as in the case of minimal rank preserving direct product, $H_{1} \overline{\times} H_{2}$ need not be Hausdorff if both the graphs contains edges of degree 2 (See Figure 1) and a similar result of Theorem 2.6 also holds in the case of maximal rank preserving direct product.
Theorem 3.5. Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs with no loops. Then the maximal rank preserving direct product $H_{1} \widehat{\times} H_{2}$ of H_{1} and H_{2} is Hausdorff provided degree of each vertex in any edge of degree 2 of the hypergraph $H_{1}\left(\right.$ or $\left.H_{2}\right)$ is different from 1.

Let H_{1} and H_{2} be two hypergraphs, if all the edges of both H_{1} and H_{2} are loops, then all the edges of $H_{1} \times H_{2}$ are loops. As a consequence we have the following proposition.

Proposition 3.6. Let H_{1} and H_{2} be two hypergraphs. If all the edges of both of them are loops, then the maximal rank preserving direct product $H_{1} \overline{\times} H_{2}$ of H_{1} and H_{2} is Hausdorff.

Definition 3.7. The Strong product [5] $H_{1} \boxtimes H_{2}$ of two hypergraphs $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ is a hypergraph with vertex set $V_{1} \times V_{2}$ and a subset $e=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ of $V_{1} \times V_{2}$ is an edge of $H_{1} \widehat{\boxtimes} H_{2}$ if,

1. $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is an edge of H_{1} and $v_{1}=v_{2}=\ldots=v_{r} \in V_{2}$, or
2. $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a subset of an edge of H_{2} and $u_{1}=u_{2}=\ldots=u_{n} \in V_{1}$, or
3. $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is an edge of H_{1} and there is an edge $f \in \mathcal{E}_{2}$ of H_{2} such that $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a multiset of elements of f, and $f \subseteq\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, or
4. $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is an edge of H_{2} and there is an edge $f \in \mathcal{E}_{1}$ of H_{1} such that $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is a multiset of elements of f, and $f \subseteq\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$.
Remark 3.8. $E\left(H_{1} \widehat{\otimes} H_{2}\right)=E\left(H_{1} \square H_{1}\right) \cup E\left(H_{1} \widehat{\times} H_{2}\right)$. Thus it is immediate that if H_{1} and H_{2} are two Hausdorff hypergraphs then their strong product is Hausdorff.

4 Non-rank Preserving Direct Product

Definition 4.1. [5] The Non-rank preserving direct product $H_{1} \tilde{\times} H_{2}$ of two hypergraphs $H_{1}=$ $\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ is a hypergraph with vertex set $V_{1} \times V_{2}$ and edge set $\{\{(u, v)\} \cup((e-\{u\}) \times$ $\left.(f-\{v\})) / u \in e \in \mathcal{E}_{1}, v \in f \in \mathcal{E}_{2}\right\}$.
Remark 4.2. If H_{1} is a hypergraph with all of its edges are loops then for any hypergraph H_{2}, the edges of $H_{1} \widetilde{\times} H_{2}$ are loops. Hence it is Haudorff.

Theorem 4.3. Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs. Suppose $|e| \neq 2$ for any $e \in \mathcal{E}_{1}$ and H_{2} is 2-uniform, then $H_{1} \widetilde{\times} H_{2}$ is Hausdorff.

Proof. Consider two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of $H_{1} \widetilde{\times} H_{2}$
Case 1. $u_{1}=u_{2}, v_{1} \neq v_{2}$
Let e be an edge of H_{1} with $|e|=n$, such that $u_{1} \in e$. If e is the loop $\left\{u_{1}\right\}$, then $\left\{\left(u_{1}, v_{1}\right)\right\}$ and $\left\{\left(u_{2}, v_{2}\right)\right\}$ are nonadjacent edges of $H_{1} \widetilde{\times} H_{2}$. Otherwise let $e=\left\{u_{1}, u_{3}, u_{4}, \ldots u_{n+1}\right\}$.

Subcase 1. $f=\left\{v_{1}, v_{2}\right\}$ is an edge of H_{2}.
Now, the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right)\right\} \cup\left(\left\{u_{3}, u_{4}, \ldots, u_{n+1}\right\} \times\left\{v_{2}\right\}\right)$ and $e_{2}=\left\{\left(u_{1}, v_{2}\right)\right\} \cup\left(\left\{u_{3}, u_{4}, \ldots, u_{n+1}\right\} \times\right.$ $\left.\left\{v_{1}\right\}\right)$ of $H_{1} \widetilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{1}, v_{2}\right) \in e_{2}$.
Subcase 2. There exists no edge of H_{2} containing both v_{1} and v_{2}.
Let f_{1} be an edge of H_{2} such that $v_{1} \in f_{1}$ and f_{2} be an edge of H_{2} such that $v_{2} \in f_{2}$. Let $f_{1}=\left\{v_{1}, v\right\}$ and $f_{2}=\left\{v_{2}, w\right\}$. Then the edges $e_{1}=\left\{\left(u_{4}, v\right)\right\} \cup\left(\left\{u_{1}, u_{3}, u_{5}, u_{6} \ldots, u_{n+1}\right\} \times\left\{v_{1}\right\}\right)$ and $e_{2}=\left\{\left(u_{3}, w\right)\right\} \cup\left(\left\{u_{1}, u_{4}, u_{5} \ldots, u_{n+1}\right\} \times\left\{v_{2}\right\}\right)$ of $H_{1} \widetilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1}$, $\left(u_{1}, v_{2}\right) \in e_{2}$.
Case 2. $u_{1} \neq u_{2}, v_{1} \neq v_{2}$
Subcase 1. There exists an edge e of H_{1} with $|e|=n$, containing both u_{1} and u_{2}, where $n \geq 3$.
Let $e=\left\{u_{1}, u_{2}, u_{3} \ldots, u_{n}\right\}$
Assume that $f=\left\{v_{1}, v_{2}\right\}$ is an edge of H_{2}. Then the edges $e_{1}=\left\{\left(u_{n}, v_{2}\right)\right\} \cup\left(\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\} \times\right.$ $\left.\left\{v_{1}\right\}\right)$ and $e_{2}=\left\{\left(u_{n}, v_{1}\right)\right\} \cup\left(\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\} \times\left\{v_{2}\right\}\right)$ of $H_{1} \widetilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in$ $e_{1},\left(u_{2}, v_{2}\right) \in e_{2}$.

Suppose there exists no edge of H_{2} containing both v_{1} and v_{2}. Let f_{1} be an edge of H_{2} such that $v_{1} \in f_{1}$ and f_{2} be an edge of H_{2} such that $v_{2} \in f_{2}$. Suppose $f_{1}=\left\{v_{1}, v\right\}$ and $f_{2}=\left\{v_{2}, w\right\}$. Then the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right)\right\} \cup\left(\left\{u_{2}, u_{3}, \ldots, u_{n}\right\} \times\{v\}\right)$ and $e_{2}=\left\{\left(u_{1}, w\right)\right\} \cup\left(\left\{u_{2}, u_{3}, \ldots, u_{n}\right\} \times\left\{v_{2}\right\}\right)$ of $H_{1} \widetilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{2}, v_{2}\right) \in e_{2}$.
Subcase 2. There exists no edge of H_{1} containing both u_{1} and u_{2}.
Let g_{1} be an edge of H_{1} with $\left|g_{1}\right|=n$, containing u_{1} and g_{2} be an edge of H_{1} with $\left|g_{2}\right|=$ m, containing u_{2}. Let us suppose that $n \geq m$. If $n=1$, then there is nothing to prove. So assume $n>1$. Suppose $\left|g_{1} \cap g_{2}\right|=k, 0 \leq k \leq(m-1)$. Let $g_{1}=\left\{u_{1}, u_{3}, u_{4}, \ldots, u_{n+1}\right\}$ and $g_{2}=\left\{w_{1}, w_{2}, \ldots w_{k} \ldots, w_{m}\right\}$ with $w_{1}=u_{2}$. If $k \geq 1$, let $w_{2}=u_{3}, w_{3}=u_{4}, \ldots w_{k+1}=u_{k+2}$.

Assume that $f=\left\{v_{1}, v_{2}\right\}$ is an edge of H_{2}. Note that, the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right)\right\} \cup\left(\left\{u_{3}, u_{4}, \ldots, u_{n+1}\right\} \times\right.$ $\left.\left\{v_{2}\right\}\right)$ and $e_{2}=\left\{\left(w_{1}, v_{2}\right)\right\} \cup\left(\left\{w_{2}, w_{3}, \ldots, w_{m}\right\} \times\left\{v_{1}\right\}\right)$ of $H_{1} \widetilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1}$, $\left(u_{2}, v_{2}\right) \in e_{2}$.

Suppose there exists no edge of H_{2} containing both v_{1} and v_{2}.
Suppose $f_{1}=\left\{v_{1}, v\right\}$ and $f_{2}=\left\{v_{2}, w\right\}$ are two edges of H_{2}. Then the edges $e_{1}=\left\{\left(u_{4}, v\right)\right\} \cup$ $\left(\left\{u_{1}, u_{3}, u_{4}, \ldots, u_{n+1}\right\} \times\left\{v_{1}\right\}\right)$ and $e_{2}=\left\{\left(w_{2}, w\right)\right\} \cup\left(\left\{w_{1}, w_{3}, w_{4}, \ldots, w_{m}\right\} \times\left\{v_{2}\right\}\right)$ of $H_{1} \tilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{2}, v_{2}\right) \in e_{2}$.

Hence the theorem.
Theorem 4.4. Let $H_{1}=\left(V_{1}, \mathcal{E}_{1}\right)$ and $H_{2}=\left(V_{2}, \mathcal{E}_{2}\right)$ be two hypergraphs. If H_{1} is Hausdorff and for any vertex $v \in V_{1}$, if there exists distinct edges e and f containing v such that $e \cap f=\{v\}$, then $H_{1} \widetilde{\times} H_{2}$ is Hausdorff.

Proof. Consider two distinct vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of $H_{1} \widetilde{\times} H_{2}$.
Case 1. $v_{1}=v_{2}$
In this case $u_{1} \neq u_{2}$. As H_{1} is Hausdorff, there exist nonadjacent edges e_{1} and e_{2} in H such that $u_{1} \in e_{1}$ and $u_{2} \in e_{2}$. Let $\left|e_{1}\right|=n$ and $\left|e_{2}\right|=m$. If $n=1$ or $m=1$, then there is nothing to prove. So assume that $n, m \geq 2$. Let $e_{1}=\left\{u_{1}, u_{3}, \ldots, u_{n+1}\right\}$ and $e_{2}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ with $w_{1}=u_{2}$. Let g be an edge of H_{2} with $|g|=p$, containing v_{1}. Suppose $g=\left\{v_{1}, v_{3}, v_{4} \ldots, v_{p+1}\right\}$. Such an edge exists by hypothesis. Then the edges $e=\left\{\left(u_{1}, v_{1}\right)\right\} \cup\left(\left\{u_{3}, u_{4}, \ldots, u_{n+1}\right\} \times\left\{v_{3}, v_{4}, \ldots, v_{p+1}\right\}\right)$ and $f=\left\{\left(w_{1}, v_{1}\right)\right\} \cup\left(\left\{w_{2}, w_{3}, \ldots, w_{m}\right\} \times\left\{v_{3}, v_{4}, \ldots, v_{p+1}\right\}\right)$ of $H_{1} \widetilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e$, $\left(u_{2}, v_{1}\right) \in f$.

Case 2. $v_{1} \neq v_{2}$

Subcase 1. $u_{1}=u_{2}$
By hypothesis there exist edges e and f containing u_{1} such that $e \cap f=\left\{u_{1}\right\}$. Let $|e|=n,|f|=m$. Suppose $e=\left\{x_{1}, x_{2}, \ldots, x_{n-1}, u_{1}\right\}, f=\left\{y_{1}, y_{2}, \ldots, y_{m-1}, u_{1}\right\}$.

Suppose there exists an edge g with $|g|=p$ of H_{2} containing both v_{1} and v_{2}. Let us suppose that $g=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Now the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right)\right\} \cup\left(\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\} \times\left\{v_{2}, v_{3}, \ldots, v_{p}\right\}\right)$ and
$e_{2}=\left\{\left(u_{1}, v_{2}\right)\right\} \cup\left(\left\{y_{1}, y_{2}, \ldots, y_{m-1}\right\} \times\left\{v_{1}, v_{3}, \ldots, v_{p}\right\}\right)$ of $H_{1} \tilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1}$, $\left(u_{1}, v_{2}\right) \in e_{2}$.

Suppose there exist no edge of H_{2} containing both v_{1} and v_{2}. Let f_{1} be an edge of H_{2} with $\left|f_{1}\right|=p$ such that $v_{1} \in f_{1}$ and f_{2} be an edge of H_{2} with $\left|f_{2}\right|=q$ such that $v_{2} \in f_{2}$. Suppose $f_{1}=\left\{v_{1}, v_{3}, v_{4} \ldots, v_{p+1}\right\}$ and $f_{2}=\left\{w_{1}, w_{2}, \ldots, w_{q}\right\}$ with $w_{1}=v_{2}$. Now the edges $e_{1}=\left\{\left(u_{1}, v_{1}\right)\right\} \cup$ $\left(\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\} \times\left\{v_{3}, v_{4}, \ldots, v_{p+1}\right\}\right)$ and $e_{2}=\left\{\left(u_{1}, w_{1}\right)\right\} \cup\left(\left\{y_{1}, y_{2}, \ldots, y_{m-1}\right\} \times\left\{w_{2}, w_{3}, \ldots, w_{q}\right\}\right)$ of $H_{1} \widetilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e_{1},\left(u_{1}, v_{2}\right) \in e_{2}$.
Subcase 2. $u_{1} \neq u_{2}$
As H_{1} is Hausdorff, there exist nonadjacent edges e_{1} and e_{2} such that $u_{1} \in e_{1}$ and $u_{2} \in e_{2}$. Let $\left|e_{1}\right|=n$ and $\left|e_{2}\right|=m$. Suppose $e_{1}=\left\{u_{1}, u_{3}, u_{4} \ldots, u_{n+1}\right\}$ and $e_{2}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ with $w_{1}=u_{2}$.

Suppose there exists an edge g with $|g|=p$ of H_{2} containing both v_{1} and v_{2}. Let us suppose $g=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Then the edges $e=\left\{\left(u_{1}, v_{1}\right)\right\} \cup\left(\left\{u_{3}, u_{4}, \ldots, u_{n+1}\right\} \times\left\{v_{2}, v_{3}, \ldots, v_{p}\right\}\right)$ and $f=\left\{\left(w_{1}, v_{2}\right)\right\} \cup\left(\left\{w_{2}, w_{3}, \ldots, w_{m}\right\} \times\left\{v_{1}, v_{3}, \ldots, v_{p}\right\}\right)$ of $H_{1} \widetilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e$, $\left(u_{2}, v_{2}\right) \in f$.

Suppose there exist no edge of H_{2} containing both v_{1} and v_{2}. Let g_{1} be an edge of H_{2} with $\left|g_{1}\right|=p$ such that $v_{1} \in g_{1}$ and g_{2} be an edge of H_{2} with $\left|g_{2}\right|=q$ such that $v_{2} \in g_{2}$. Let $g_{1}=\left\{v_{1}, v_{3}, v_{4} \ldots, v_{p+1}\right\}$ and $g_{2}=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}$ with $y_{1}=v_{2}$. Then the edges $e=\left\{\left(u_{1}, v_{1}\right)\right\} \cup\left(\left\{u_{3}, u_{4}, \ldots, u_{n+1}\right\} \times\right.$ $\left.\left\{v_{3}, v_{4}, \ldots, v_{p+1}\right\}\right)$ and $f=\left\{\left(w_{1}, y_{1}\right)\right\} \cup\left(\left\{w_{2}, w_{3}, \ldots, w_{m}\right\} \times\left\{y_{2}, y_{3}, \ldots, y_{q}\right\}\right)$ of $H_{1} \tilde{\times} H_{2}$ are nonadjacent and $\left(u_{1}, v_{1}\right) \in e,\left(u_{2}, v_{2}\right) \in f$.

5 Conclusion

In this paper we have discussed conditions under which minimal rank, maximal rank, non-rank, preserving direct product of two hypergraphs to be Hausdorff. It is proved that normal product and strong product of any two hypergraphs is always Hausdorff.

Acknowledgment

The first author acknowledge the financial support by University Grants Commission of India, under Faculty Development Programme.

References

[1] Claude Berge, Hypergraphs: combinatorics of finite sets, vol. 45, Elsevier, 1984.
[2] Claude Berge and Edward Minieka, Graphs and hypergraphs, vol. 7, North-Holland publishing company Amsterdam, 1973.
[3] Alain Bretto, Hypergraph theory, Springer, 2013.
[4] Carl Georg Heise, Konstantinos Panagiotou, Oleg Pikhurko, and Anusch Taraz, Coloring dembeddable k-uniform hypergraphs, Discrete \& computational geometry 52 (2014), no. 4, 663-679.
[5] Marc Hellmuth, Lydia Ostermeier, and Peter F Stadler, A survey on hypergraph products, Mathematics in Computer Science 6 (2012), no. 1, 1-32.
[6] K Pearson and Tan Zhang, Eigenvalues on the adjacency tensor of products of hypergraphs, Int.J.Contemp.Math.Sciences 8 (2013), no. 4, 151-158.
[7] RI Tyshkevich and Vadim E Zverovich, Line hypergraphs, Discrete Mathematics 161 (1996), no. 1, 265-283.
[8] Vitaly Voloshin, Introduction to graph and hypergraph theory, Nova, 2009.
[9] Magnus Wahlström, Exact algorithms for finding minimum transversals in rank-3 hypergraphs, Journal of Algorithms 51 (2004), no. 2, 107-121.

[^0]: * Corresponding author

[^1]: ${ }^{2}$ A multiset is an unordered collection of objects (called the elements) in which, unlike a standard (Cantorian) set, elements are allowed to repeat. In other words a multiset is a set in which elements may belong more than once. $\{1,1,1,2,3,3\}$ is a multiset.

